Neutrosophic sober open sets: An overview
Abstract
In this study, a new class of neutrosophic set, known as Neutrosophic Sober open set in Neutrosophic Topological space is introduced, and its fundamental features are examined. After this, we create a new topology type known as neutrosophic sober topology in order to study its relationships in more detail.
Keywords:
Neutrosophic set, Neutrosophic Sober open set, Neutrosophic Sober topological space, NŠ(Cl) operator, NŠ(Int) operatorReferences
- [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [2] Atanassov, K. T., & Stoeva, S. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
- [3] Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88(1), 81–89. https://doi.org/10.1016/S0165-0114(96)00076-0
- [4] Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic. In Neutrosophy, neutrosophic set, neutrosophic probability (pp. 1–141). American Research Press. https://web-archive.southampton.ac.uk/cogprints.org/1919/3/eBook-Neutrosophics2.pdf
- [5] Salama, A. A., Smarandache, F., & Kromov, V. (2014). Neutrosophic closed set and neutrosophic. Neutrosophic sets and systems, 4, 4–8. https://fs.unm.edu/NeutrosophicClosedSet.pdf
- [6] Al-Hamido, R. K. (2024). Neutrosophic generalized topological space. Plithogenic logic and computation, 2, 1–9. https://orcid.org/0000-0001-8388-0557
- [7] Jayanthi, D., & Jafari, S. (2024). Sober open sets in sober topological spaces. South east asian journal of mathematics and mathematical sciences, 20(3), 385–396. https://doi.org/10.56827/SEAJMMS.2024.2003.29
- [8] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite Study. https://fs.unm.edu/SingleValuedNeutrosophicSets.pdf
- [9] Salama, A. A., & Alblowi, S. A. (2012). Neutrosophic set and neutrosophic topological spaces. IOSR journal of mathematics, 3(4), 31–35. https://doi.org/10.9790/5728-0343135
- [10] James R, M. (2004). Topology. Prentice –Hall of India. https://archive.org/details/topology0002edmunk