Estimation of population mean utilizing two neutrosophic auxiliary variables with imprecise information

Authors

  • Sunil Kumar Yadav Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
  • Rajesh Singh Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
  • Shobh Nath Tiwari * Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India

https://doi.org/10.48313/uda.v2i1.51

Abstract

This paper introduces two improved almost unbiased estimator for estimating the finite population mean in neutrosophic settings, incorporating two auxiliary variables to handle indeterminate data more effectively. We have improved the classic ratio and product estimator with new estimators  and , offering enhanced accuracy when applied to uncertain real-life data. Through theoretical derivations and empirical validation using agricultural data (rice yield with climatic variables), we demonstrate that our estimators perform better in term of both accuracy and efficiency. The results show significantly higher Percentage Relative Efficiency (PRE) and lower Mean Squared Error (MSE), highlighting the method’s effectiveness for scenarios involving imprecise or indeterminate data. This study develops a framework for better statistical estimation by merging neutrosophic logic with classical sampling methods to handle imprecise data effectively.  

Keywords:

Neutrosophic statistics, Ratio estimator, Product estimator, Auxiliary variables, Population mean, Percentage relative efficiency

References

  1. [1] Cochran, W. G. (1940). The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. The journal of agricultural science, 30(2), 262–275. https://doi.org/10.1017/S0021859600048012

  2. [2] Murthy, M. N. (1964). Product method of estimation. Sankhyā: The Indian journal of statistics, series A, 26(1), 69–74. https://www.jstor.org/stable/25049308

  3. [3] Cochran, W. G. (1977). Sampling techniques. John wiley & sons. https://archive.org/details/cochran-1977-sampling-techniques

  4. [4] Singh, R., Chauhan, P., Sawan, N., & Smarandache, F. (2007). Ratio estimators in simple random sampling using information on auxiliary attribute. Renaissance High Press. https://fs.unm.edu/Stat/RatioEstimatorsInSimpleRandom.pdf

  5. [5] Singh, R., Mishra, R., Kumari, A., & Yadav, S. K. (2024). Almost unbiased estimators for population coefficient of variation using auxiliary information. Asian journal of probability and statistics, 26(5), 1–18. https://doi.org/10.9734/ajpas/2024/v26i5614

  6. [6] Sharma, P., & Singh, R. (2014). Improved ratio type estimator using two auxiliary variables under second order approximation. Mathematical journal of interdisciplinary sciences, 2(2), 179–190. https://doi.org/10.15415/mjis.2014.22014

  7. [7] Abu-Dayyeh, W. A., Ahmed, M. S., Ahmed, R. A., & Muttlak, H. A. (2003). Some estimators of a finite population mean using auxiliary information. Applied mathematics and computation, 139(2–3), 287–298. https://doi.org/10.1016/S0096-3003(02)00180-7

  8. [8] Kadilar, C., & Cingi, H. (2005). A new estimator using two auxiliary variables. Applied mathematics and computation, 162(2), 901–908. https://doi.org/10.1016/j.amc.2003.12.130

  9. [9] Singh, H. P., Singh, R., Espejo, M. R., Pineda, M. D., & Nadarajah, S. (2005). On the efficiency of a dual to ratio-cum-product estimator in sample surveys. Mathematical proceedings of the royal irish academy (Vol. 105, pp. 51–56). Royal Irish Academy. https://doi.org/10.3318/pria.2005.105.2.51

  10. [10] Singh, H. P., Upadhyaya, L. N., & Tailor, R. (2009). Ratio-cum-product type exponential estimator. Statistica, 69(4), 299–310. https://doi.org/10.6092/issn.1973-2201/3561

  11. [11] Singh, R., & Singh, H. P. (1998). Almost unbiased ratio and product-type estimators in systematic sampling. Qüestiió: quaderns d'estadística i investigació operativa, 22(3), 403–416. http://www.idescat.cat/sort/questiio/questiiopdf/22.3.1.Singh.pdf

  12. [12] Smarandache, F. (2014). Introduction to neutrosophic statistics. Sitech and Educationpublishing. https://fs.unm.edu/NeutrosophicStatistics.pdf

  13. [13] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  14. [14] Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. American Research Press. https://philpapers.org/rec/SMANNP

  15. [15] Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. In American research press (pp. 1–141). Citeseer. http://cogprints.org/1919/

  16. [16] Smarandache, F. (2006). Neutrosophic set-A generalization of the intuitionistic fuzzy set. 2006 IEEE international conference on granular computing, 24(3), 38–42. https://doi.org/10.1109/grc.2006.1635754

  17. [17] Smarandache, F. (2013). Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Sitech. https://digitalrepository.unm.edu/math_fsp/34/

  18. [18] Smarandache, F. (2019). Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (Picture fuzzy set, ternary fuzzy set), pythagorean fuzzy set, q-rung orthopair fuzzy set, spherical fuzzy set, etc. Journal of new theory, (29), 1–31. http://arxiv.org/abs/1911.07333

  19. [19] Mohanta, K. K., & Sharanappa, D. S. (2023). Neutrosophic data envelopment analysis: A comprehensive review and current trends. Optimality, 1(1), 10–22. https://doi.org/10.22105/opt.v1i1.19

  20. [20] Mohanta, K. K., & Toragay, O. (2023). Enhanced performance evaluation through neutrosophic data envelopment analysis leveraging pentagonal neutrosophic numbers. Journal of operational and strategic analytics, 1(2), 70–80. https://doi.org/10.56578/josa010204

  21. [21] Edalatpanah, S. A., Abdolmaleki, E., Khalifa, H. A. E. W., & Das, S. K. (2023). A novel computational method for neutrosophic uncertainty related quadratic fractional programming problems. Neutrosophic sets and systems, 58(1), 611–630. https://doi.org/10.5281/zenodo.8404542

  22. [22] Edalatpanah, S. A., Hassani, F. S., Smarandache, F., Sorourkhah, A., Pamucar, D., & Cui, B. (2024). A hybrid time series forecasting method based on neutrosophic logic with applications in financial issues. Engineering applications of artificial intelligence, 129, 107531. https://doi.org/10.1016/j.engappai.2023.107531

  23. [23] Zhang, K., Xie, Y., Noorkhah, S. A., Imeni, M., & Das, S. K. (2023). Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: a case study in private insurance companies. Management decision, 61(2), 363–381. https://doi.org/10.1108/MD-01-2022-0120

  24. [24] Singh, A., Kulkarni, H., Smarandache, F., & Vishwakarma, G. K. (2024). Computation of separate ratio and regression estimator under neutrosophic stratified sampling: An application to climate data. Journal of fuzzy extension and applications, 5(4), 605–621. https://doi.org/10.22105/jfea.2024.422211.1313

  25. [25] Tahir, Z., Khan, H., Aslam, M., Shabbir, J., Mahmood, Y., & Smarandache, F. (2021). Neutrosophic ratio-type estimators for estimating the population mean. Complex and intelligent systems, 7(6), 2991–3001. https://doi.org/10.1007/s40747-021-00439-1

  26. [26] Singh, R., Kumari, A., Smarandache, F., & Tiwari, S. N. (2025). Construction of almost unbiased estimator for population mean using neutrosophic information. Neutrosophic sets and systems, 76, 449–463. https://doi.org/10.5281/zenodo.14010268

  27. [27] Singh, R., & Tiwari, S. N. (2025). Improved estimator for population mean utilizing known medians of two auxiliary variables under neutrosophic framework. Neutrosophic systems with applications, 25(1), 38–52. https://B2n.ir/bb3016

  28. [28] Singh, R., & Kumar, A. (2024). Neutrosophic ranked set sampling scheme for estimating population mean: An application to demographic data. Neutrosophic sets and systems, 68, 247–270. https://doi.org/10.5281/zenodo.11479519

  29. [29] Singh, M. P. (1969). Comparison of some ratio-cum-product estimators. Sankhyā: the indian journal of statistics, series b, 31(3/4), 375–378. https://www.jstor.org/stable/25051691

  30. [30] Koyuncu, N., & Kadilar, C. (2009). Family of estimators of population mean using two auxiliary variables in stratified random sampling. Communications in statistics-theory and methods, 38(14), 2398–2417. https://doi.org/10.1080/03610920802562723

  31. [31] Singh, S., & Singh, R. (1993). Almost filtration of bias precipitates: A new approach. Journal of the indian society of agricultural statistics, 45(2), 214–218. https://www.researchgate.net/publication/261099021_Almost_Filtration_of_Bias_Precipitates_A_New_Approach

  32. [32] Singh, S., & Singh, R. (1991). Almost bias precipitate: A new technique. Aligarh journ of statistics, 11, 5–8. https://www.researchgate.net/publication/261098810_Almost_bias_precipitate_filtration_A_new_technique

  33. [33] Singh, M. P. (1967). Ratio cum product method of estimation. Metrika, 12(1), 34–42. https://doi.org/10.1007/BF02613481

  34. [34] Aslam, M. (2022). Aggregative effect on rice production due to climate change using index number under indeterminate environment: a case study from Punjab, Pakistan. Theoretical and applied climatology, 147(1–2), 283–290. https://doi.org/10.1007/s00704-021-03832-5

Published

2024-03-18

How to Cite

Yadav, S. K. ., Singh, R. ., & Tiwari, S. N. (2024). Estimation of population mean utilizing two neutrosophic auxiliary variables with imprecise information. Uncertainty Discourse and Applications, 2(1), 17-31. https://doi.org/10.48313/uda.v2i1.51

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.