Assessing stakeholder preferences in carbon credit systems with neutrosophic DELPHI and DEMATEL

Authors

  • Phi-Hung Nguyen * Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.
  • Lan-Anh Thi Nguyen Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.
  • Duc-Minh Vu Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.
  • Tra-Giang Vu Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.
  • Anh-Phuong Nguyen-Danh Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.
  • Thi-Lien Nguyen Research Center of Applied Sciences, Faculty of Business, FPT University, Hanoi 100000, Vietnam.

https://doi.org/10.48313/uda.v2i2.72

Abstract

The global carbon credit market has evolved into a key mechanism for mitigating climate change, yet challenges persist regarding transparency, stakeholder trust, and market efficiency. Vietnam is in the early stages of establishing its Carbon Credit Systems (CCS), guided by its commitment to achieving net-zero emissions by 2050. Despite regulatory developments, the Vietnamese carbon market remains fragmented, with concerns over pricing disparities, market liquidity, verification standards, and stakeholder engagement. This study assesses stakeholder preferences in Vietnam’s CCS using an advanced Multi-Criteria Decision-Making (MCDM) approach-based Neutrosophic Sets (NS) integrating Delphi and DEMATEL methods. Unlike traditional fuzzy logic-based models, NS provides a more nuanced representation of uncertainty by incorporating truth, indeterminacy, and falsity, allowing for more accurate stakeholder preference modeling. The NS Delphi method is applied to refine expert consensus, while NS DEMATEL identifies interdependencies among key stakeholder concerns, including policy alignment, financial incentives, verification mechanisms, and market accessibility. Findings reveal that regulatory transparency, price stability, and cross-border certification are critical factors shaping market participation. Moreover, private sector involvement and financial institutions play a pivotal role in market development, requiring stronger incentives and risk mitigation measures. The results contribute to both theoretical advancements in decision science and practical policymaking by offering structured recommendations to enhance Vietnam’s carbon trading system. By integrating stakeholder perspectives with uncertainty modeling, this study provides a strategic foundation for developing a more transparent, efficient, and scalable carbon credit framework in Vietnam, ensuring alignment with global carbon pricing mechanisms and fostering long-term sustainability.

Keywords:

Carbon credit market, Stakeholder preferences, Neutrosophic sets, Multi-criteria decision-making, Sustainability

References

  1. [1] Global Market Insights. (2025). Carbon credit market size. https://www.gminsights.com/industry-analysis/carbon-credit-market

  2. [2] Smits, M. (2017). The new (fragmented) geography of carbon market mechanisms: Governance challenges from Thailand and Vietnam. Global environmental politics, 17(3), 69–90. https://doi.org/10.1162/GLEP_a_00416

  3. [3] Blum, M. (2020). The legitimation of contested carbon markets after Paris--empirical insights from market stakeholders. Journal of environmental policy & planning, 22(2), 226–238. https://www.tandfonline.com/doi/full/10.1080/1523908X.2019.1697658

  4. [4] Trouwloon, D., Streck, C., Chagas, T., & Martinus, G. (2023). Understanding the use of carbon credits by companies: A review of the defining elements of corporate climate claims. Global challenges, 7(4), 2200158. https://doi.org/10.1002/gch2.202200158

  5. [5] Kreibich, N., & Hermwille, L. (2021). Caught in between: Credibility and feasibility of the voluntary carbon market post-2020. Climate policy, 21(7), 939–957. https://doi.org/10.1080/14693062.2021.1948384

  6. [6] United Nations Climate Change. (2015). Vietnam submits its climate action plan ahead of 2015 Paris agreement. https://unfccc.int/news/vietnam-submits-its-climate-action-plan-ahead-of-2015-paris-agreement

  7. [7] Lyon, T. P., & Maxwell, J. W. (2011). Greenwash: Corporate environmental disclosure under threat of audit. Journal of economics and management strategy, 20(1), 3–41. https://doi.org/10.1111/j.1530-9134.2010.00282.x

  8. [8] Vietnam Briefing. (2025). Vietnam’s carbon market development: Objectives and implementation plan under decision 232. https://www.vietnam-briefing.com/news/vietnams-carbon-market-development-objectives-and-implementation-plan-under-decision-232.html/

  9. [9] Ministry of Agriculture and Environment. (2025). Moving with the carbon market. https://en.mae.gov.vn/Pages/chi-tiet-tin-Eng.aspx?ItemID=8769

  10. [10] Ministry of Agriculture and Environment. (2025). Viet Nam to establish a carbon market. https://en.mae.gov.vn/viet-nam-to-establish-a-carbon-market-8745.htm

  11. [11] Bang, D. N. (2025). Unlocking the carbon exchange - The role of the carbon credit market in achieving sustainable development goals and combating climate change. https://www.pwc.com/vn/en/insights-hub/perspective-blog/unlock-carbon-exchange-market.html

  12. [12] Poudyal, N. C., Siry, J., & Bowker, J. M. (2011). Urban forests and carbon markets: buyers’ perspectives. Journal of forestry, 109(7), 378–385. https://doi.org/10.1093/jof/109.7.378

  13. [13] Smits, M., & Middleton, C. (2014). New arenas of engagement at the water governance-climate finance nexus? An analysis of the boom and bust of hydropower CDM projects in Vietnam. Water alternatives, 7(3). https://www.water-alternatives.org/index.php/alldoc/articles/vol7/v7issue3/264-a7-3-7/file

  14. [14] Van Tam, N., Toan, N. Q., & Ngoc, P. H. (2024). Key strategies for achieving net-zero carbon buildings and promoting carbon credits in construction markets: A case of an emerging economy. Energy for sustainable development, 81, 101488. https://doi.org/10.1016/j.esd.2024.101488

  15. [15] Tien, N. D. (2024). Green credit in Vietnam: Policies and practices. In Green management: a new paradigm in the world of business (pp. 183–207). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83797-442-920241011

  16. [16] Warner, R., Kaidonis, M., Dun, O., Rogers, K., Shi, Y., Nguyen, T. T. X., & Woodroffe, C. D. (2016). Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam. Sustainability science, 11, 661–677. https://doi.org/10.1007/s11625-016-0359-3

  17. [17] Alves, F., Leal Filho, W., & Azeiteiro, U. (2018). Theory and practice of climate adaptation. Springer. https://doi.org/10.1007/978-3-319-72874-2

  18. [18] Zhang, S., Wu, Z., Wang, Y., & Hao, Y. (2021). Fostering green development with green finance: An empirical study on the environmental effect of green credit policy in China. Journal of environmental management, 296, 113159. https://doi.org/10.1016/j.jenvman.2021.113159

  19. [19] Ngo, V. M., Nguyen, H. H., Pham, H. C., & Nguyen, L. H. (2024). Engage or retreat? Exploring the determinants of participation in Climate Finance public-private partnerships. Climatic change, 177(7), 104. https://doi.org/10.1007/s10584-024-03759-6

  20. [20] Van Tam, N., Quynh, T. T. H., & Toan, N. Q. (2025). How Vietnam can achieve net-zero carbon emissions in construction and built environment by 2050: An integrated AHP and DEMATEL approach. Building and environment, 274, 112752. https://doi.org/10.1016/j.buildenv.2025.112752

  21. [21] Lien, M. K., Huyen, N. D., Cong, N. T., & Van Minh, N. (2020). Exploring potential participation of Vietnam in the carbon market. Low carbon economy, 11(2), 25–43. https://doi.org/10.4236/lce.2020.112002

  22. [22] Dong, J., & Huo, H. (2017). Identification of financing barriers to energy efficiency in small and medium-sized enterprises by integrating the fuzzy delphi and fuzzy DEMATEL Approaches. Energies, 10(8), 1172. https://doi.org/10.3390/en10081172

  23. [23] Nguyen, P. H., Thi Nguyen, L. A., Le, H. Q., & Tran, L. C. (2024). Navigating critical barriers for green bond markets using A fuzzy multi-criteria decision-making model: Case study in Vietnam. Heliyon, 10(13). https://www.cell.com/heliyon/fulltext/S2405-8440(24)09524-0

  24. [24] Nguyen, P. H., Nguyen, L. A. T., Pham, T. V., Vu, T. G., Vu, D. M., Nguyen, T. H. T., … & Le, H. G. H. (2025). Mapping barriers to sustainable fashion consumption: Insights from Neutrosophic-Z number and Delphi-DEMATEL integration. Neutrosophic sets and systems, 80, 749–788. https://doi.org/10.5281/zenodo.14788319

  25. [25] Sharma, T., & Xu, Y. (2021). Domestic and international CO2 source-sink matching for decarbonizing India’s electricity. Resources, conservation and recycling, 174, 105824. https://doi.org/10.1016/j.resconrec.2021.105824

  26. [26] Grubb, M. (2004). The economics of the Kyoto Protocol. In The economics of climate change (pp. 92–134). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9780203495780-12/economics-kyoto-protocol-michael-grubb

  27. [27] Corbera, E., & Schroeder, H. (2011). Governing and implementing REDD+. Environmental science & policy, 14(2), 89–99. https://doi.org/10.1016/j.envsci.2010.11.002

  28. [28] Gupta, Y. (2011). Carbon credit: A step towards green environment. Global journal of management and business research, 11(5), 16–19. https://www.researchgate.net/profile/Yuvika-Gupta/publication/304351810_carbon_credit/data/576cc50e08aedb18f3eb3116/carbon-credit.pdf

  29. [29] Aldy, J. E., & Stavins, R. N. (2009). Post-Kyoto international climate policy: Implementing architectures for agreement. Cambridge University Press. https://doi.org/10.1017/CBO9780511813207

  30. [30] Davide, M. (2012). The doha climate gateway: A first key-point assessment. Review Of Environment, Energy And Economics (Re3), Forthcoming. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2189448

  31. [31] Mcallister, L. (2012). Cap and trade. University of California, Davis. https://www.researchgate.net/publication/256036280_Cap_and_Trade

  32. [32] Maslin, M. A., Lang, J., & Harvey, F. (2023). A short history of the successes and failures of the international climate change negotiations. UCL open environment, 5, e059. https://doi.org/10.14324/111.444/ucloe.000059

  33. [33] Climate Change Laws of the World. (2022). Decree no. 06/2022/nd-cp of the government: Regulations on greenhouse gas emission reduction and ozone layer protection. https://climate-laws.org/document/decree-no-06-2022-nd-cp-on-mitigation-of-green-house-gas-ghg-emissions-and-protection-of-ozone-layer_d8ff

  34. [34] LuatVietnam. (2025). Decree 107/2022/ND-CP pilot transfer of emission reductions for North Central region. https://english.luatvietnam.vn/decree-no-107-2022-nd-cp-on-the-pilot-transfer-of-emission-reductions-and-financial-management-under-the-em-239716-doc1.html

  35. [35] Ayesha, S., Naseem, I., bin Saqib, S. S., Khan, M. B., & Zaman, K. (2024). From domestic stability to global resilience: Analyzing Pakistan’s foreign policy, regional dynamics, and socioeconomic pathways in the context of COP 29. Journal of economic sciences, 3(2), 181–198. https://jesciences.com/index.php/jes/article/view/90

  36. [36] Climate Change Laws of the World. (2020). Decision No. 1055/QD-TTg on promulgating the National Climate Change Adaptation Plan for 2021 - 2030 Period with a Vision by 2050. https://climate-laws.org/document/decision-no-1055-qd-ttg-on-promulgating-the-national-climate-change-adaptation-plan-for-2021-2030-period-with-a-vision-by-2050_6939

  37. [37] Schmalensee, R., & Stavins, R. N. (2017). Lessons learned from three decades of experience with cap and trade. Review of environmental economics and policy, 11(1), 59-79. https://doi.org/10.55603/jes.v3i2.a5

  38. [38] Pillay, S., & Buys, P. (2015). Investigating the impact of carbon tax on socially responsible corporate governance: The case of South African motor vehicle manufacturers. Corporate ownership and control, 12(2), 128–134. https://B2n.ir/my6852

  39. [39] Haites, E., & Wang, X. (2009). Ensuring the environmental effectiveness of linked emissions trading schemes over time. Mitigation and adaptation strategies for global change, 14(5), 465–476. https://doi.org/10.1007/s11027-009-9176-7

  40. [40] Tuerk, A., Mehling, M., Flachsland, C., & Sterk, W. (2009). Linking carbon markets: concepts, case studies and pathways. Climate policy, 9(4), 341–357. https://doi.org/10.3763/cpol.2009.0621

  41. [41] Leisz, S. J., Rasmussen, K., Olesen, J. E., Vien, T. D., Elberling, B., & Christiansen, L. (2007). The impacts of local farming system development trajectories on greenhouse gas emissions in the northern mountains of Vietnam. Regional environmental change, 7(4), 187–208. https://doi.org/10.1007/s10113-007-0037-1

  42. [42] Majestic Realty. (2023). Majestic freeway business center. https://www.majesticrealty.com/projects/majestic-freeway-business-center/

  43. [43] Direct, C. (2025). Carbon removal, reduction, and avoidance credits explained. https://www.carbon-direct.com/insights/how-do-carbon-credits-actually-work-removal-reduction-and-avoidance-credits-explained

  44. [44] Schmalensee, R., & Stavins, R. N. (2017). Lessons learned from three decades of experience with cap and trade. Review of environmental economics and policy, 11(1), 59–79. https://doi.org/10.1093/reep/rew017

  45. [45] Tcvetkov, P., Cherepovitsyn, A., & Fedoseev, S. (2019). Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon, 5(12), e02845. https://www.cell.com/heliyon/fulltext/S2405-8440(19)36504-1

  46. [46] Pinkse, J., & Kolk, A. (2007). Multinational corporations and emissions trading:: Strategic responses to new institutional constraints. European management journal, 25(6), 441–452. https://doi.org/10.1016/j.emj.2007.07.003

  47. [47] Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., ... & Zhou, B. (2021). Climate change 2021: The physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FrontMatter.pdf

  48. [48] Kwatra, S., Kumar, A., Sharma, S., & Sharma, P. (2021). Stakeholder participation in prioritizing sustainability issues at regional level using analytic hierarchy process (AHP) technique: A case study of Goa, India. Environmental and sustainability indicators, 11, 100116. https://doi.org/10.1016/j.indic.2021.100116

  49. [49] Wuri, J., Rahayu, C. W. E., Hardanti, Y. R., & Kristianti, N. K. A. (2024). Assessing the emission reduction policies on global value chains: The renewable energy policy framework. Energies, 17(23), 6031. https://doi.org/10.3390/en17236031

  50. [50] Sick, V., Armstrong, K., Cooney, G., Cremonese, L., Eggleston, A., Faber, G., ... & Zimmermann, A. (2020). The need for and path to harmonized life cycle assessment and techno-economic assessment for carbon dioxide capture and utilization. Energy technology, 8(11), 1901034. https://doi.org/10.1002/ente.201901034

  51. [51] Glanz, S., & Schönauer, A. L. (2021). Towards a low-carbon society via hydrogen and carbon capture and storage: Social acceptance from a stakeholder perspective. Journal of sustainable development of energy, water and environment systems, 9(1), 0–9. https://doi.org/10.13044/j.sdewes.d8.0322

  52. [52] Сherepovitsyn, A. E., Ilinova, A. A., & Evseeva, O. O. (2019). Stakeholders management of carbon sequestration project in the state--business--society system. Записки горного института, 240, 731–742. https://cyberleninka.ru/article/n/stakeholders-management-of-carbon-sequestration-project-in-the-state-business-society-system

  53. [53] Dhanda, K. K., Sarkis, J., & Dhavale, D. G. (2022). Institutional and stakeholder effects on carbon mitigation strategies. Business strategy and the environment, 31(3), 782–795. https://doi.org/10.1002/bse.2917

  54. [54] Flak, L. S., & Rose, J. (2005). Stakeholder governance: Adapting stakeholder theory to e-government. Communications of the association for information systems, 16(1), 31. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=3049&context=cais

  55. [55] Joltreau, E., & Sommerfeld, K. (2019). Why does emissions trading under the EU emissions trading system (ETS) not affect firms’ competitiveness? Empirical findings from the literature. Climate policy, 19(4), 453–471. https://www.tandfonline.com/doi/full/10.1080/14693062.2018.1502145

  56. [56] Zhang, W., Xu, M., Feng, Y., Mao, Z., & Yan, Z. (2024). The effect of procrastination on physical exercise among college students—The chain effect of exercise commitment and action control. International journal of mental health promotion, 26(8). https://doi.org/10.32604/ijmhp.2024.052730

  57. [57] Denny Ellerman, A., David Harrison, J, D., & Joskow, P. L. (2023). Emissions trading in the U.S.: Experience, lessons, and considerations for greenhouse gases. https://www.c2es.org/wp-content/uploads/2003/05/emissions-trading-us-experience-lessons-and-considerations-ghgs.pdf

  58. [58] Meyer, J. W., & Rowan, B. (1977). Institutionalized organizations: Formal structure as myth and ceremony. American journal of sociology, 83(2), 340–363. https://www.journals.uchicago.edu/doi/abs/10.1086/226550

  59. [59] Dam, B. Van, Helfer, V., Kaiser, D., Sinemus, E., Staneva, J., & Zimmer, M. (2024). Towards a fair, reliable, and practical verification framework for Blue Carbon-based CDR. Environmental research letters, 19(8), 81004. https://doi.org/10.1088/1748-9326/ad5fa3

  60. [60] Pra, A., & Brotto, L. (2018). Forest carbon offsetting and standards. In Forest management auditing (pp. 113–137). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781315745985-8/forest-carbon-offsetting-standards-alex-pra-lucio-brotto

  61. [61] Wang, Y., Wang, J., & Dong, Z. (2022). Interactions and co-governance policies of stakeholders in the carbon emission reduction. Sustainability, 14(10), 5891. https://doi.org/10.3390/su14105891

  62. [62] Singh, M. K., Yadav, S. K., Rajput, B. S., & Sharma, P. (2024). Carbon storage and economic efficiency of fruit-based systems in semi-arid region: a symbiotic approach for sustainable agriculture and climate resilience. Carbon research, 3(1), 33. https://doi.org/10.1007/s44246-024-00114-3

  63. [63] Zhu, C., Ma, J., Li, J., & Goh, M. (2025). Grandfathering or benchmarking? The impact of carbon quota allocation rule on the joint emission reduction supply chain. International journal of production research, 63(10), 3608–3629. https://www.tandfonline.com/doi/abs/10.1080/00207543.2024.2425777

  64. [64] Kong, Y., Zhao, T., Yuan, R., & Chen, C. (2019). Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles. Journal of cleaner production, 211, 222–232. https://doi.org/10.1016/j.jclepro.2018.11.178

  65. [65] Fowlie, M., Reguant, M., & Ryan, S. P. (2016). Market-based emissions regulation and industry dynamics. Journal of political economy, 124(1), 249–302. https://www.journals.uchicago.edu/doi/abs/10.1086/684484

  66. [66] Williams, J. R., Peterson, J. M., & Mooney, S. (2005). The value of carbon credits: Is there a final answer? Journal of soil and water conservation, 60(2), 36A--40A. https://doi.org/10.1080/00224561.2005.12435775

  67. [67] Uddin, M. A., Chang, B. H., Aldawsari, S. H., & Li, R. (2025). The interplay between green finance, policy uncertainty and carbon market volatility: A time frequency approach. Sustainability, 17(3), 1198. https://doi.org/10.3390/su17031198

  68. [68] Ivanov, I. T., Kruttli, M. S., & Watugala, S. W. (2024). Banking on carbon: Corporate lending and cap-and-trade policy. The review of financial studies, 37(5), 1640–1684. https://doi.org/10.1093/rfs/hhad085

  69. [69] Chevallier, J. (2012). Banking and borrowing in the EU ETS: A review of economic modelling, current provisions and prospects for future design. Journal of economic surveys, 26(1), 157–176. https://doi.org/10.1111/j.1467-6419.2010.00642.x

  70. [70] Carlén, B. (2003). Market power in international carbon emissions trading: A laboratory test. The energy journal, 24(3), 1–26. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol24-No3-1

  71. [71] Yang, X., Zhu, J., Xie, H., & Zhang, J. (2023). Liquidity spillover from carbon emission trading markets to stock markets in China. Investment management & financial innovations, 20(4), 227. http://dx.doi.org/10.21511/imfi.20(4).2023.19

  72. [72] Cao, J., Li, Y., Zhan, X., Zhang, W., & Zhou, L. (2021). Carbon emissions, institutional trading, and the liquidity of corporate bonds. Available at ssrn, 3881497. https://waf-e.dubuplus.com/apjfs.dubuplus.com/anonymous/O18C3YA/DubuDisk/public/cafm/2021/2-2 Carbon Emissions, Institutional Trading, and the Liquidity of Corporate Bonds.pdf

  73. [73] Tsai, Y. C. (2025). Enhancing transparency and fraud detection in carbon credit markets through blockchain-based visualization techniques. Electronics, 14(1), 157. https://doi.org/10.3390/electronics14010157

  74. [74] Busch, T., Johnson, M., & Pioch, T. (2022). Corporate carbon performance data: Quo vadis? Journal of industrial ecology, 26(1), 350–363. https://doi.org/10.1111/jiec.13008

  75. [75] Rongbing, H. (2011). Environmental auditing: An informationized regulatory tool of carbon emission reduction. Energy procedia, 5, 6–14. https://doi.org/10.1016/j.egypro.2011.03.002

  76. [76] Fritz, L., Baum, C. M., Low, S., & Sovacool, B. K. (2024). Public engagement for inclusive and sustainable governance of climate interventions. Nature communications, 15(1), 4168. https://www.nature.com/articles/s41467-024-48510-y

  77. [77] Huisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2014). Special volume on carbon emissions reduction: Policies, technologies, monitoring, assessment and modeling. Journal of cleaner production, 64(1), 6–8. https://research.ulapland.fi/en/publications/special-volume-on-carbon-emissions-reduction-policies-technologie

  78. [78] Liu, Z., Sun, T., Yu, Y., Ke, P., Deng, Z., Lu, C., … & Ding, X. (2022). Near-real-time carbon emission accounting technology toward carbon neutrality. Engineering, 14, 44–51. https://doi.org/10.1016/j.eng.2021.12.019

  79. [79] Comello, S. D., Reichelstein, J., & Reichelstein, S. (2023). Corporate carbon reporting: Improving transparency and accountability. One earth, 6(7), 803–810. https://www.cell.com/one-earth/fulltext/S2590-3322(23)00263-4

  80. [80] Sheng, J., Zhou, W., & De Sherbinin, A. (2018). Uncertainty in estimates, incentives, and emission reductions in REDD+ projects. International journal of environmental research and public health, 15(7), 1544. https://doi.org/10.3390/ijerph15071544

  81. [81] Wolde-Rufael, Y., & Mulat-Weldemeskel, E. (2021). Do environmental taxes and environmental stringency policies reduce CO2 emissions? Evidence from 7 emerging economies. Environmental science and pollution research, 28(18), 22392–22408. https://doi.org/10.1007/s11356-020-11475-8

  82. [82] Sun, J., & Dong, F. (2022). Decomposition of carbon emission reduction efficiency and potential for clean energy power: Evidence from 58 countries. Journal of cleaner production, 363, 132312. https://doi.org/10.1016/j.jclepro.2022.132312

  83. [83] Schneider, L., Michaelowa, A., Broekhoff, D., Espelage, A., & Siemons, A. (2019). Lessons learned from the first round of applications by carbon-offsetting programs for eligibility under CORSIA. Climate Focus, Perspectives Climate Group. https://www.sei.org/publications/lessons-learned-from-the-first-round-of-applications-by-carbon-offsetting-programs-for-eligibility-under-corsia/

  84. [84] Schuett, L. (2024). Permanence and liability: Legal considerations on the integration of carbon dioxide removal into the EU emissions trading system. Transnational environmental law, 13(1), 87–110. https://doi.org/10.1017/S2047102524000013

  85. [85] Ma, G. S., & Duan, M. S. (2024). Potential risks of double-counting carbon emission reductions in environmental rights trading and countermeasures. Climate change research, 20(1), 85–96. https://doi.org/10.12006/j.issn.1673-1719.2023.175

  86. [86] Cao, J., Li, W., & Hasan, I. (2023). The impact of lowering carbon emissions on corporate labour investment: A quasi-natural experiment. Energy economics, 121, 106653. https://doi.org/10.1016/j.eneco.2023.106653

  87. [87] Senadheera, D. K. L., Wahala, W. M. P. S. B., & Weragoda, S. (2019). Livelihood and ecosystem benefits of carbon credits through rainforests: A case study of Hiniduma Bio-link, Sri Lanka. Ecosystem services, 37, 100933. https://doi.org/10.1016/j.ecoser.2019.100933

  88. [88] Wang, J., Jin, S., Bai, W., Li, Y., & Jin, Y. (2016). Comparative analysis of the international carbon verification policies and systems. Natural hazards, 84, 381–397. https://doi.org/10.1007/s11069-016-2593-5

  89. [89] Lovell, H. C. (2010). Governing the carbon offset market. Wiley interdisciplinary reviews: climate change, 1(3), 353–362. https://doi.org/10.1002/wcc.43

  90. [90] Helleiner, E., & Thistlethwaite, J. (2013). Subprime catalyst: Financial regulatory reform and the strengthening of US carbon market governance. Regulation and governance, 7(4), 496–511. https://doi.org/10.1111/j.1748-5991.2012.01136.x

  91. [91] Lederer, M. (2012). Market making via regulation: The role of the state in carbon markets. Regulation and governance, 6(4), 524–544. https://doi.org/10.1111/j.1748-5991.2012.01145.x

  92. [92] Hasselknippe, H. (2003). Systems for carbon trading: An overview. Climate policy, 3(SUPP 2), S43--S57. https://doi.org/10.1016/j.clipol.2003.09.014

  93. [93] Buck, H. J., Furhman, J., Morrow, D. R., Sanchez, D. L., & Wang, F. M. (2020). Adaptation and carbon removal. One earth, 3(4), 425–435. https://doi.org/10.1016/j.oneear.2020.09.008

  94. [94] Redmond, L., & Convery, F. (2015). The global carbon market-mechanism landscape: Pre and post 2020 perspectives. Climate policy, 15(5), 647–669. https://doi.org/10.1080/14693062.2014.965126

  95. [95] Carbon Market Watch. (2015). Towards a global carbon market: Prospects for linking the EU ETS to other carbon markets. Carbon Market Watch. https://carbonmarketwatch.org/wp-content/uploads/2015/05/NC-Towards-a-global-carbon-market-report_web-1.pdf

  96. [96] Howard, R. J., Tallontire, A., Stringer, L., & Marchant, R. (2015). Unraveling the notion of “fair carbon”: key challenges for standards development. World development, 70, 343–356. https://doi.org/10.1016/j.worlddev.2015.02.008

  97. [97] Parry, I. (2021). Proposal for an international carbon price floor among large emitters. Staff climate notes, 2021(001), 1. https://doi.org/10.5089/9781513583204.066

  98. [98] Pan, C., Shrestha, A., Innes, J. L., Zhou, G., Li, N., Li, J., … & Wang, G. (2022). Key challenges and approaches to addressing barriers in forest carbon offset projects. Journal of forestry research, 33(4), 1109–1122. https://doi.org/10.1007/s11676-022-01488-z

  99. [99] Ruseva, T., Marland, E., Szymanski, C., Hoyle, J., Marland, G., & Kowalczyk, T. (2017). Additionality and permanence standards in California’s Forest Offset Protocol: A review of project and program level implications. Journal of environmental management, 198, 277–288. https://doi.org/10.1016/j.jenvman.2017.04.082

  100. [100] De Cian, E., & Tavoni, M. (2012). The role of international carbon offsets in a second-best climate policy: A numerical evaluation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1594699

  101. [101] Jung, C., Krutilla, K., & Boyd, R. (1996). Incentives for advanced pollution abatement technology at the industry level: An evaluation of policy alternatives. Journal of environmental economics and management, 30(1), 95–111. https://doi.org/10.1006/jeem.1996.0007

  102. [102] Dechamps, P., & Pilavachi, P. A. (2004). Research and development actions to reduce CO2 emissions within the European Union. Oil and gas science and technology, 59(3), 323–330. https://doi.org/10.2516/ogst:2004023

  103. [103] Chen, Z., Zhang, Y., Wang, H., Ouyang, X., & Xie, Y. (2022). Can green credit policy promote low-carbon technology innovation? Journal of cleaner production, 359, 132061. https://doi.org/10.1016/j.jclepro.2022.132061

  104. [104] Watson, J., Byrne, R., Mallett, A., Stua, M., Ockwell, D., Xiliang, Z., … & Xunmin, O. (2011). UK-China collaborative study on low carbon technology transfer. https://d1wqtxts1xzle7.cloudfront.net/78133679/UK-China_Final_Report_-_April_2011-libre.pdf?1641400182=&response-content-disposition=inline%3B+filename%3DUK_China_collaborative_study_on_low_carb.pdf&Expires=1751212116&Signature=a~0K4J1AgRjPSpWtMwRCr2Wt7db

  105. [105] Wei, Q., Zhou, C., Liu, Q., Zhou, W., & Huang, J. (2023). A barrier evaluation framework for forest carbon sink project implementation in China using an integrated BWM-IT2F-PROMETHEE II method. Expert systems with applications, 230, 120612. https://doi.org/10.1016/j.eswa.2023.120612

  106. [106] Chen, T. L., Hsu, H. M., Pan, S. Y., & Chiang, P. C. (2019). Advances and challenges of implementing carbon offset mechanism for a low carbon economy: The Taiwanese experience. Journal of cleaner production, 239, 117860. https://doi.org/10.1016/j.jclepro.2019.117860

  107. [107] Wu, S., & Niu, R. (2024). Development of carbon finance in China based on the hybrid MCDM method. Humanities and social sciences communications, 11(1), 1–11. https://doi.org/10.1057/s41599-023-02558-1

  108. [108] Florindo, T. J., Florindo, G. I. B. d. M., Talamini, E., Costa, J. S. d., Léis, C. M. d., Tang, W. Z., … & Ruviaro, C. F. (2018). Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. Journal of cleaner production, 196, 1379–1389. https://doi.org/10.1016/j.jclepro.2018.06.116

  109. [109] Su, Q., & others. (2024). Addressing the crucial factors affecting the implementation of carbon credit concept using a comprehensive decision-making analysis: A case study. Journal of operational and strategic analytics, 2(3), 136–143. https://doi.org/10.56578/josa020301

  110. [110] Gujba, H., Thorne, S., Mulugetta, Y., Rai, K., & Sokona, Y. (2012). Financing low carbon energy access in Africa. Energy policy, 47(SUPPL.1), 71–78. https://doi.org/10.1016/j.enpol.2012.03.071

  111. [111] Li, H., Zhang, X., Ng, S. T., & Skitmore, M. (2018). Quantifying stakeholder influence in decision/evaluations relating to sustainable construction in China – A Delphi approach. Journal of cleaner production, 173, 160–170. https://doi.org/10.1016/j.jclepro.2017.04.151

  112. [112] Zhang, K., Chen, Z., & Wang, Y. (2025). A novel approach for agricultural carbon emission reduction by integrating fermatean neutrosophic set with WINGS and AHP-EWM. Scientific reports, 15(1), 391. https://doi.org/10.1038/s41598-024-84423-y

  113. [113] Li, C., Solangi, Y. A., & Ali, S. (2023). Evaluating the factors of green finance to achieve carbon peak and carbon neutrality targets in China: A Delphi and Fuzzy AHP approach. Sustainability, 15(3), 2721. https://doi.org/10.3390/su15032721

  114. [114] Solangi, Y. A., Tan, Q., Mirjat, N. H., Valasai, G. Das, Khan, M. W. A., & Ikram, M. (2019). An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes, 7(2), 118. https://doi.org/10.3390/pr7020118

  115. [115] Taylan, O., Alamoudi, R., Kabli, M., Aljifri, A., Ramzi, F., & Herrera-Viedma, E. (2020). Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions. Sustainability, 12(7), 2745. https://doi.org/10.3390/su12072745

  116. [116] Azhar, N. A., Radzi, N. A. M., & Wan Ahmad, W. S. H. M. (2021). Multi-criteria decision making: A systematic review. Recent advances in electrical & electronic engineering (formerly recent patents on electrical & electronic engineering), 14(8), 779–801. https://doi.org/10.2174/2352096514666211029112443

  117. [117] Ali, S., Xu, H., & Ahmad, N. (2021). Reviewing the strategies for climate change and sustainability after the US defiance of the Paris Agreement: an AHP–GMCR-based conflict resolution approach. Environment, development and sustainability, 23(8), 11881–11912. https://doi.org/10.1007/s10668-020-01147-5

  118. [118] Peng, X., & Huang, H. (2020). Fuzzy decision making method based on cocoso with critic for financial risk evaluation. Technological and economic development of economy, 26(4), 695–724. https://doi.org/10.3846/tede.2020.11920

  119. [119] Kauko, K., & Palmroos, P. (2014). The Delphi method in forecasting financial markets-An experimental study. International journal of forecasting, 30(2), 313–327. https://doi.org/10.1016/j.ijforecast.2013.09.007

  120. [120] Dalkey, N., & Helmer, O. (1963). An experimental application of the DELPHI method to the use of experts. Management science, 9(3), 458–467. https://doi.org/10.1287/mnsc.9.3.458

  121. [121] Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An example, design considerations and applications. Information and management, 42(1), 15–29. https://doi.org/10.1016/j.im.2003.11.002

  122. [122] Khan, S., Khan, M. I., Haleem, A., & Jami, A. R. (2022). Prioritising the risks in Halal food supply chain: An MCDM approach. Journal of islamic marketing, 13(1), 45–65. https://doi.org/10.1108/JIMA-10-2018-0206

  123. [123] Grisham, T. (2009). The Delphi technique: A method for testing complex and multifaceted topics. International journal of managing projects in business, 2(1), 112–130. https://doi.org/10.1108/17538370910930545

  124. [124] Venugopal, R., Veeramani, C., & Edalatpanah, S. A. (2021). Analysis of fuzzy DEMATEL approach for financial ratio performance evaluation of NASDAQ exchange. Proceedings of international conference on data science and applications: ICDSA 2021, Volume 2 (pp. 637-648). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-5348-3_51

  125. [125] Das, D., Datta, A., Kumar, P., Kazancoglu, Y., & Ram, M. (2022). Building supply chain resilience in the era of COVID-19: An AHP-DEMATEL approach. Operations management research, 15(1–2), 249–267. https://doi.org/10.1007/s12063-021-00200-4

  126. [126] Hsu, C. W., Kuo, T. C., Chen, S. H., & Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of cleaner production, 56, 164–172. https://doi.org/10.1016/j.jclepro.2011.09.012

  127. [127] Kazemi, S., Mavi, R. K., Soltanmohammad, N., Latifi, I., & Fallahian-Najafabadi, A. (2013). Selection and ranking sustainable strategies and assessing their impact on reducing carbon dioxide (CO2), using DEMATEL method. Advances in environmental biology, 7(11), 3535–3543. https://B2n.ir/wj5493

  128. [128] Kaur, R., Singh, S., & Kumar, H. (2018). AuthCom: Authorship verification and compromised account detection in online social networks using AHP-TOPSIS embedded profiling based technique. Expert systems with applications, 113, 397–414. https://doi.org/10.1016/j.eswa.2018.07.011

  129. [129] Al-Essa, R. I., & Al-Suhail, G. A. (2023). AFB-GPSR: Adaptive beaconing strategy based on fuzzy logic scheme for geographical routing in a mobile ad hoc network (MANET). Computation, 11(9), 174. https://doi.org/10.3390/computation11090174

  130. [130] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  131. [131] Ejegwa, P. A., Akowe, S. O., Otene, P. M., & Ikyule, J. M. (2014). An overview on intuitionistic fuzzy sets. International journal of scientific & technology research, 3(3), 142–144. https://www.researchgate.net/profile/Paul-Ejegwa/publication/283120221_An_Overview_on_Intuitionistic_Fuzzy_Sets/links/562b7ddd08ae518e3480e3ac/An-Overview-on-Intuitionistic-Fuzzy-Sets.pdf

  132. [132] Cường, B. C. (2015). Picture fuzzy sets. Journal of computer science and cybernetics, 30(4), 409. https://doi.org/10.15625/1813-9663/30/4/5032

  133. [133] Pramanik, S. (2022). Single-valued Neutrosophic set: An overview. Integrated science, 5, 563–608. https://doi.org/10.1007/978-3-030-94651-7_26

  134. [134] Zhou, W., & He, J. M. (2014). Interval-valued intuitionistic fuzzy ordered precise weighted aggregation operator and its application in group decision making. Technological and economic development of economy, 20(4), 648–672. https://doi.org/10.3846/20294913.2013.869516

  135. [135] Lupiáñez, F. G. (2010). On neutrosophic paraconsistent topology. Kybernetes, 39(4), 598–601. https://doi.org/10.1108/03684921011036817

  136. [136] Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International journal of production economics, 87(2), 171–184. https://doi.org/10.1016/S0925-5273(03)00099-9

  137. [137] Leccese, F., Salvadori, G., Rocca, M., Buratti, C., & Belloni, E. (2020). A method to assess lighting quality in educational rooms using analytic hierarchy process. Building and environment, 168, 106501. https://doi.org/10.1016/j.buildenv.2019.106501

  138. [138] Moy, N., Chan, H. F., & Torgler, B. (2018). How much is too much? The effects of information quantity on crowdfunding performance. PLoS one, 13(3), e0192012. https://doi.org/10.1371/journal.pone.0192012

  139. [139] Jafarzadeh Ghoushchi, S., Shaffiee Haghshenas, S., Memarpour Ghiaci, A., Guido, G., & Vitale, A. (2023). Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment. Neural computing and applications, 35(6), 4549–4567. https://doi.org/10.1007/s00521-022-07929-4

  140. [140] Abdullah, L., Ong, Z., & Mohd Mahali, S. (2021). Single-valued Neutrosophic DEMATEL for segregating types of criteria: A case of subcontractors’ selection. Journal of mathematics, 2021, 1–12. https://doi.org/10.1155/2021/6636029

  141. [141] Ashraf, S., Abdullah, S., Aslam, M., Qiyas, M., & Kutbi, M. A. (2019). Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms. Journal of intelligent & fuzzy systems, 36(6), 6089–6102. https://doi.org/10.3233/JIFS-181941

  142. [142] Lee, H. S., Tzeng, G. H., Yeih, W., Wang, Y. J., & Yang, S. C. (2013). Revised DEMATEL: Resolving the infeasibility of DEMATEL. Applied mathematical modelling, 37(10–11), 6746–6757. https://doi.org/10.1016/j.apm.2013.01.016

  143. [143] Ahmed, S. M., Reddy, P., Sachdeva, D., & Saini, L. (2022). Climate finance: A primer on carbon markets and climatetech. https://doi.org/10.2139/ssrn.4233063

  144. [144] Merger, E., & Pistorius, T. (2011). Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market. Carbon balance and management, 6, 1–12. https://doi.org/10.1186/1750-0680-6-4

  145. [145] Tanveer, U., Ishaq, S., & Hoang, T. G. (2024). Enhancing carbon trading mechanisms through innovative collaboration: Case studies from developing nations. Journal of cleaner production, 482, 144122. https://doi.org/10.1016/j.jclepro.2024.144122

  146. [146] Parnphumeesup, P., & Kerr, S. A. (2015). Willingness to pay for gold standard carbon credits. Energy sources, part b: economics, planning and policy, 10(4), 412–417. https://doi.org/10.1080/15567249.2010.551251

  147. [147] Steckel, J. C., Jakob, M., Flachsland, C., Kornek, U., Lessmann, K., & Edenhofer, O. (2017). From climate finance toward sustainable development finance. Wiley interdisciplinary reviews: climate change, 8(1), e437. https://doi.org/10.1002/wcc.437

  148. [148] Anjos, M. F., Feijoo, F., & Sankaranarayanan, S. (2022). A multinational carbon-credit market integrating distinct national carbon allowance strategies. Applied energy, 319, 119181. https://doi.org/10.1016/j.apenergy.2022.119181

  149. [149] Kiss, A., Castro, G., & Newcombe, K. (2013). The role of multilateral institutions. Capturing carbon and conserving biodiversity: the market approach, 360(1797), 90–101. https://doi.org/10.4324/9781849770682

  150. [150] Woo, J., Fatima, R., Kibert, C. J., Newman, R. E., Tian, Y., & Srinivasan, R. S. (2021). Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: A review of the literature. Building and environment, 205, 108199. https://doi.org/10.1016/j.buildenv.2021.108199

  151. [151] Everhart, S. (2023). Growing carbon credits: strengthening the agricultural sector’s participation in voluntary carbon markets through law and policy. New York university environmental law journal, 31, 65–116. https://blogs.microsoft.com/blog/

  152. [152] Brown, K., & Corbera, E. (2003). Exploring equity and sustainable development in the new carbon economy. Climate policy, 3(SUPPL 1), S41--S56. https://doi.org/10.1016/j.clipol.2003.10.004

  153. [153] International Economic Intergration. (2025). Vietnam’s carbon market: Prudent approach to avoid costly outcomes. https://wtocenter.vn/chuyen-de/27636-vietnams-carbon-market-prudent-approach-to-avoid-costly-outcomes

Published

2025-06-18

How to Cite

Nguyen, P.-H., Nguyen, L.-A. T., Vu, D.-M., Vu, T.-G., Nguyen-Danh, A.-P., & Nguyen, T.-L. (2025). Assessing stakeholder preferences in carbon credit systems with neutrosophic DELPHI and DEMATEL. Uncertainty Discourse and Applications, 2(2), 158-195. https://doi.org/10.48313/uda.v2i2.72

Similar Articles

1-10 of 30

You may also start an advanced similarity search for this article.