Probabilistic hyperrough set and covering hyperrough set

Authors

  • Takaaki Fujita * Independent Researcher, Shinjuku, Shinjuku-ku, Tokyo, Japan.

https://doi.org/10.48313/uda.v2i2.70

Abstract

Rough set theory provides a mathematical framework for approximating subsets using lower and upper bounds defined by equivalence relations, effectively capturing uncertainty in classification and data analysis. Building on these foundational ideas, further generalizations such as Hyperrough Sets and Superhyperrough Sets have been developed. Probabilistic Rough Sets provide a framework for estimating uncertainty by utilizing membership probabilities, allowing for the definition of lower and upper approximations based on specified threshold values. Covering rough sets approximate information via overlapping covers, providing lower definite and upper possible boundaries when true partitions are unavailable.
In this paper, we introduce newly defined concepts of the Probabilistic HyperRough Set and Covering HyperRough Set, as well as the Probabilistic SuperHyperRough Set and Covering SuperHyperRough Set. These models extend the existing frameworks of the Probabilistic Rough Set and Covering Rough Set, respectively.

Keywords:

Rough set, Hyperrough set, Covering rough set, Superhyperrough set, Probabilistic rough set

References

  1. [1] Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341–356. https://doi.org/10.1007/BF01001956

  2. [2] Pawlak, Z., Wong, S. K. M., Ziarko, W., & others. (1988). Rough sets: Probabilistic versus deterministic approach. International Journal of Man-Machine Studies, 29(1), 81–95. https://doi.org/10.1016/S0020-7373(88)80032-4

  3. [3] Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. Communications of the ACM, 38(11), 88–95. https://doi.org/10.1145/219717.219791

  4. [4] Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. Springer. https://doi.org/10.1007/3-540-44761-X

  5. [5] Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics & Systems, 29(7), 661–688. https://doi.org/10.1080/019697298125470

  6. [6] Al-Matarneh, L., Sheta, A., Bani-Ahmad, S., Alshaer, J., & Al-Oqily, I. (2014). Development of temperature-based weather forecasting models using neural networks and fuzzy logic. International Journal of Multimedia and Ubiquitous Engineering, 9(12), 343–366. https://doi.org/10.14257/ijmue.2014.9.12.31

  7. [7] Riordan, D., & Hansen, B. K. (2002). A fuzzy case-based system for weather prediction. Engineering Intelligent Systems for Electrical Engineering and Communications, 10(3), 139–146. https://doi.org/10.1049/iet-eis.2002.0027

  8. [8] Palmer, T. N. (2000). Predicting uncertainty in forecasts of weather and climate. Reports on Progress in Physics, 63(2), 71–116. https://doi.org/10.1088/0034-4885/63/2/201

  9. [9] Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55. https://doi.org/10.1038/nature14956

  10. [10] Fujita, T. (2025). Short introduction to rough, hyperrough, superhyperrough, treerough. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond: Fifth volume: Various Super-HyperConcepts (Collected Papers), 394. https://B2n.ir/qj9210

  11. [11] Fujita, T. (2025). Superhypersoft hyperrough set and superhypersoft superhyperrough set. https://B2n.ir/kd8720

  12. [12] Fujita, T. (2025). A study on hyperfuzzy hyperrough sets, hyperneutrosophic hyperrough sets, and hypersoft hyperrough sets with applications in cybersecurity. Artificial Intelligence in Cybersecurity, 2, 14–36. https://doi.org/10.14257/aics.2025.2.02

  13. [13] Fujita, T. (2025). Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. Biblio Publishing. https://B2n.ir/yz3913

  14. [14] Fujita, T. (2023). Reconsideration and proposal of development models in projects—“quasi” development models: Quasi-waterfall and quasi-agile. European Journal of Social Sciences Studies, 9(2). https://doi.org/10.46827/ejsss.v9i2.1575

  15. [15] Das, A. K., Smarandache, F., Das, R., & Das, S. (2024). A comprehensive study on decision-making algorithms in retail and project management using double framed hypersoft sets. HyperSoft Set Methods in Engineering, 2, 62–71. https://doi.org/10.61356/j.hsse.2024.2310

  16. [16] Fujita, T. (2025). Hyperfuzzy hyperrough set, hyperneutrosophic hyperrough set, and hypersoft hyperrough set.

  17. [17] Yao, Y. (2008). Probabilistic rough set approximations. International Journal of Approximate Reasoning, 49(2), 255–271. https://doi.org/10.1016/j.ijar.2007.05.019

  18. [18] Yao, Y. (2010). Three-way decisions with probabilistic rough sets. Information Sciences, 180(3), 341–353. https://doi.org/10.1016/j.ins.2009.09.021

  19. [19] Zhang, C., Ding, J., Zhan, J., & Li, D. (2022). Incomplete three-way multi-attribute group decision making based on adjustable multigranulation Pythagorean fuzzy probabilistic rough sets. International Journal of Approximate Reasoning, 147, 40–59. https://doi.org/10.1016/j.ijar.2022.05.004

  20. [20] Yao, Y., Greco, S., & Słowiński, R. (2015). Probabilistic rough sets. In Springer Handbook of Computational Intelligence (pp. 387–411). Springer. https://doi.org/10.1007/978-3-319-11680-8_15

  21. [21] Azam, N., & Yao, J. (2014). Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets. International Journal of Approximate Reasoning, 55(1), 142–155. https://doi.org/10.1016/j.ijar.2013.03.015

  22. [22] Yao, Y. (2011). Two semantic issues in a probabilistic rough set model. Fundamenta Informaticae, 108(3–4), 249–265. https://doi.org/10.3233/FI-2011-422

  23. [23] Ziarko, W. (2005). Probabilistic rough sets. In Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing: 10th International Conference, RSFDGrC 2005, Regina, Canada, August 31–September 3, 2005, Proceedings, Part I (Vol. 10, pp. 283–293). Springer. https://doi.org/10.1007/11548669_30

  24. [24] Liu, C., Miao, D., & Qian, J. (2014). On multi-granulation covering rough sets. International Journal of Approximate Reasoning, 55(6), 1404–1418. https://doi.org/10.1016/j.ijar.2014.01.004

  25. [25] Zhu, W., & Wang, F.-Y. (2006). A new type of covering rough set. In 2006 3rd International IEEE Conference on Intelligent Systems (pp. 444–449). IEEE. https://doi.org/10.1109/IS.2006.249

  26. [26] Zhu, W. (2007). Topological approaches to covering rough sets. Information Sciences, 177(6), 1499–1508. https://doi.org/10.1016/j.ins.2006.06.009

  27. [27] Zhu, W., & Wang, F.-Y. (2007). On three types of covering-based rough sets. IEEE Transactions on Knowledge and Data Engineering, 19(8), 1131–1144. https://doi.org/10.1109/TKDE.2007.1062

  28. [28] Han, S.-E. (2019). Covering rough set structures for a locally finite covering approximation space. Information Sciences, 480, 420–437. https://doi.org/10.1016/j.ins.2018.12.049

  29. [29] Hsiao, C.-C., Chuang, C.-C., Jeng, J.-T., & Su, S.-F. (2013). A weighted fuzzy rough sets based approach for rule extraction. In The SICE Annual Conference 2013 (pp. 104–109). IEEE. https://doi.org/10.1109/SICE.2013.6736152

  30. [30] Lenz, O. U., Cornelis, C., & Peralta, D. (2022). Fuzzy-rough-learn 0.2: A Python library for fuzzy rough set algorithms and one-class classification. In 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–8). IEEE. https://doi.org/10.1109/FUZZ45936.2022.9822755

  31. [31] Wang, X., & Wang, Q. (2022). Uncertainty measurement of variable precision fuzzy soft rough set model. In CECNet 2022. https://doi.org/10.1109/CECNet54114.2022.9775690

  32. [32] Shabir, M., Ali, M. I., & Shaheen, T. (2013). Another approach to soft rough sets. Knowledge-Based Systems, 40, 72–80. https://doi.org/10.1016/j.knosys.2012.11.012

  33. [33] Zhao, H., & Zhang, H. (2019). On hesitant neutrosophic rough set over two universes and its application. Artificial Intelligence Review, 53, 4387–4406. https://doi.org/10.1007/s10462-019-09795-4

  34. [34] Bo, C., Zhang, X., Shao, S., & Smarandache, F. (2018). Multi-granulation neutrosophic rough sets on a single domain and dual domains with applications. Symmetry, 10, 296. https://doi.org/10.3390/sym10070296

  35. [35] Raghavan, R., & Tripathy, B. K. (2011). On some topological properties of multigranular rough sets. Advances in Applied Science Research, 2(3), 536–543. https://B2n.ir/uu4328

  36. [36] Fujita, T., & Smarandache, F. (2025). Forestfuzzy, forestneutrosophic, forestplithogenic, and forestrough set. Infinite Study. https://doi.org/10.13140/RG.2.2.15515.78888

  37. [37] Fujita, T. (2025). Iterative treefuzzy set, iterative treeneutrosophic set, and iterative treesoft set. Preprint. https://doi.org/10.13140/RG.2.2.15515.78888

  38. [38] Ma, T., & Tang, M. (2006). Weighted rough set model. In Sixth International Conference on Intelligent Systems Design and Applications (Vol. 1, pp. 481–485). IEEE. https://doi.org/10.1109/ISDA.2006.118

  39. [39] Sateesh, N., Srinivasa Rao, P., & Rajya Lakshmi, D. (2023). Optimized ensemble learning-based student’s performance prediction with weighted rough set theory enabled feature mining. Concurrency and Computation: Practice and Experience, 35(7), e7601. https://doi.org/10.1002/cpe.7601

  40. [40] Yang, J., Wang, X., Wang, G., Zhang, Q., Zheng, N., & Wu, D. (2024). Fuzziness-based three-way decision with neighborhood rough sets under the framework of shadowed sets. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2024.1234567

  41. [41] Hu, Q., Yu, D., Liu, J., & Wu, C. (2008). Neighborhood rough set based heterogeneous feature subset selection. Information Sciences, 178(18), 3577–3594. https://doi.org/10.1016/j.ins.2008.05.024

Published

2025-06-15

How to Cite

Fujita, T. (2025). Probabilistic hyperrough set and covering hyperrough set. Uncertainty Discourse and Applications, 2(2), 124-138. https://doi.org/10.48313/uda.v2i2.70

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.