Soft Binary Piecewise Plus Operation: A New Type of Operation For Soft Sets

Authors

  • Aslıhan Sezgin Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye‎
  • Eda Yavuz ‎Department of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye‎

Keywords:

soft set, soft set operations, conditional complements, soft binary piecewise plus operation

Abstract

After being presented by Molodtsov, soft set theory became well-known as a cutting-edge method for addressing uncertainty-related issues and modeling uncertainty. It may be used in a range of theoretical and practical applications. The soft binary piecewise plus operation is a novel soft set operation presented in this work. Its fundamental algebraic properties are investigated in detail. Additionally, the distributions of this operation over several soft-set operations are examined. We establish that the soft binary piecewise plus operation is a right-left system and, under some assumptions, a commutative semigroup. Furthermore, by taking into account the algebraic properties of the operation and its distribution rules together, we demonstrate that the collection of soft sets over the universe, together with the soft binary piecewise plus operation and some other types of soft sets, form many important algebraic structures, like semirings and near semirings.

References

‎[1] ‎ Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4–5), ‎‎19–31. https://doi.org/10.1016/S0898-1221(99)00056-5‎

‎[2] ‎ Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & mathematics with applications, ‎‎45(4–5), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6‎

‎[3] ‎ Pei, D., & Miao, D. (2005). From soft sets to information systems. 2005 IEEE international conference on ‎granular computing (Vol. 2, pp. 617–621). IEEE.‎

‎[4] ‎ Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. ‎Computers & mathematics with applications, 57(9), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009‎

‎[5] ‎ Sezgin, A., & Atagün, A. O. (2011). On operations of soft sets. Computers & mathematics with applications, ‎‎61(5), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018‎

‎[6] ‎ Ali, M. I., Shabir, M., & Naz, M. (2011). Algebraic structures of soft sets associated with new operations. ‎Computers & mathematics with applications, 61(9), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011‎

‎[7] ‎ Yang, C. F. (2008). A note on soft set theory. Computers & mathematics with applications, 56(7), 1899–1900. ‎https://doi.org/10.1016/j.camwa.2008.03.019‎

‎[8] ‎ Neog, T. J., & Sut, D. K. (2011). A new approach to the theory of soft sets. International journal of computer ‎applications, 32(2), 1–6. https://www.academia.edu/download/53823653/2011-new_approach_soft_set.pdf

‎[9] ‎ Li, F. (2011). Notes on the soft operations. ARPN journal of systems and software, 1(6), 205–208.‎

‎[10] ‎ Ge, X., & Yang, S. (2011). Investigations on some operations of soft sets. World academy of science ‎engineering and technology, 75, 1113–1116.‎

‎[11] ‎ Singh, D., & Onyeozili, I. A. (2012). Notes on soft matrices operations. ARPN journal of science and ‎technology, 2(9), 861–869.‎

‎[12] ‎ Singh, D., & Onyeozili, I. A. (2012). On some new properties of soft set operations. International journal ‎of computer applications, 59(4), 39–44.‎

‎[13] ‎ Singh, D., & Onyeozili, I. A. (2012). Some results on distributive and absorption properties on soft ‎operations. IOSR journal of mathematics, 4(2), 18–30.‎

‎[14] ‎ Singh, D., & Onyeozili, I. A. (2012). Some conceptual misunderstandings of the fundamentals of soft set ‎theory. ARPN journal of systems and software, 2(9), 251–254.‎

‎[15] ‎ Zhu, P., & Wen, Q. (2013). Operations on soft sets revisited. Journal of applied mathematics, 2013(1), ‎‎105752. https://doi.org/10.1155/2013/105752‎

‎[16] ‎ Sen, J. (2014). On algebraic structure of soft sets. Annals of fuzzy mathematics and informatics, 7(6), 1013–‎‎1020.‎

‎[17] ‎ Onyeozili, I. A., & Gwary, T. M. (2014). A study of the fundamentals of soft set theory. International ‎journal of scientific and technology research, 3(4), 132–143.‎

‎[18] ‎ Husain, S., & Shivani, K. (2018). A study of properties of soft set and its applications. International ‎research journal of engineering and technology (IRJET), 5(01), 56–2395.‎

‎[19] ‎ Eren, Ö. F., & Çalışıcı, H. (2019). On some operations of soft sets. The fourth international conference on ‎computational mathematics and engineering sciences (CMES-2019). CMES.‎

‎[20] ‎ Stojanović, N. S. (2021). A new operation on soft sets: extended symmetric difference of soft sets. ‎Military technical courier, 69(4), 779–791. https://doi.org/10.5937/vojtehg69-33655‎

‎[21] ‎ Sezgin, A., Ahmad, S., & Mehmood, A. (2019). A new operation on soft sets: extended difference of soft ‎sets. Journal of new theory, (27), 33–42.‎

‎[22] ‎ Çağman, N. (2021). Conditional complements of sets and their application to group theory. Journal of ‎new results in science, 10(3), 67–74. https://doi.org/10.54187/jnrs.1003890‎

‎[23] ‎ Aybek, F. N. (2024). New restricted and extended soft set operations [Thesis]. ‎https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

‎[24] ‎ Akbulut, E. (2024). New type of extended operations of soft set: Complementary extended difference and lambda ‎operation [Thesis]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

‎[25] ‎ Demirci, A. M. (2024). New type of extended operations of soft set: Complementary extended union, plus and ‎theta operation [Thesis]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp‎

‎[26] Sarıalioğlu, M. (2024). New type of extended operations of soft set: Complementary extended intersection, ‎gamma and star operation [Thesis]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

‎[27] ‎ Sezgin, A., Aybek, F. N., & Atagün, A, O. (2023). New soft set operation: Complementary soft binary ‎piecewise intersection operation. Black sea journal of engineering and science, 6(4), 330–346. ‎https://doi.org/10.34248/bsengineering.1319873‎

‎[28] ‎ Sezgin, A., & Demirci, A. M. (2023). New soft set operation: complementary soft binary piecewise star ‎operation. Ikonion journal of mathematics, 5(2), 24-52. https://doi.org/10.54286/ikjm.1304566‎

‎[29] ‎ Sezgin, A., & Yavuz, E. (2023). New soft set operation: complementary soft binary piecewise lambda ‎operation. Sinop university journal of natural sciences, 8(5), 101–133. ‎https://doi.org/10.33484/sinopfbd.1320420‎

‎[30] ‎ Jun, Y. B., & Yang, X. (2011). A note on the paper combination of interval-valued fuzzy set and soft set. ‎Computers & mathematics with applications, 61(5), 1468–1470. https://doi.org/10.1016/j.camwa.2010.12.077‎

‎[31] ‎ Liu, X., Feng, F., & Jun, Y. B. (2012). A note on generalized soft equal relations. Computers & mathematics ‎with applications, 64(4), 572–578. https://doi.org/10.1016/j.camwa.2011.12.052‎

‎[32] ‎ Feng, F., & Li, Y. (2013). Soft subsets and soft product operations. Information sciences, 232, 44–57. ‎https://doi.org/10.1016/j.ins.2013.01.001‎

‎[33] ‎ Abbas, M., Ali, B., & Romaguera, S. (2014). On generalized soft equality and soft lattice structure. ‎Filomat, 28(6), 1191–1203. https://www.jstor.org/stable/24896905‎

‎[34] ‎ Abbas, M., Ali, M. I., & Romaguera, S. (2017). Generalized operations in soft set theory via relaxed ‎conditions on parameters. Filomat, 31(19), 5955–5964. https://doi.org/10.2298/FIL1719955A‎

‎[35] ‎ Al-Shami, T. M. (2019). Investigation and corrigendum to some results related to g-soft equality and ‎gf-soft equality relations. Filomat, 33(11), 3375–3383. https://doi.org/10.2298/FIL1911375A‎

‎[36] ‎ Alshami, T., & El-Shafei, M. (2020). $ T $-soft equality relation. Turkish journal of mathematics, 44(4), ‎‎1427–1441. DOI:10.3906/mat-2005-117‎

‎[37] ‎ Ali, B., Saleem, N., Sundus, N., Khaleeq, S., Saeed, M., & George, R. (2022). A contribution to the theory ‎of soft sets via generalized relaxed operations. Mathematics, 10(15), 2636. ‎https://doi.org/10.3390/math10152636‎

‎[38] ‎ Vandiver, H. S. (1934). Note on a simple type of algebra in which the cancellation law of addition does ‎not hold. Bulletin of the american mathematical society, 40(12), 914–920.‎

‎[39] ‎ Goodearl, K. R. (1979). Von Neumann regular rings. Pitman.‎

‎[40] ‎ Petrich, M. (1973). Introduction to semiring (Vol. 105). Charles E Merrill Publishing Company.‎

‎[41] ‎ Reutenauer, C., & Straubing, H. (1984). Inversion of matrices over a commutative semiring. Journal of ‎algebra, 88(2), 350–360.‎

‎[42] ‎ Głazek, K. (2002). A guide to the literature on semirings and their applications in mathematics and information ‎sciences: with complete bibliography. Springer.‎

‎[43] ‎ Kolokoltsov, V. N., & Maslov, V. P. (2013). Idempotent analysis and its applications (Vol. 401). Springer ‎Science & Business Media.‎

‎[44] ‎ Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages, and ‎computation. Acm sigact news, 32(1), 60–65. https://doi.org/10.1145/568438.568455‎

‎[45] ‎ Beasley, L. B., & Pullman, N. J. (1988). Operators that preserve semiring matrix functions. Linear algebra ‎and its applications, 99, 199–216. https://doi.org/10.1016/0024-3795(88)90132-2‎

‎[46] ‎ Beasley, L., & Pullman, N. J. (1992). Linear operators strongly preserving idempotent matrices over ‎semirings. Linear algebra and its applications, 160, 217–229. https://doi.org/10.1016/0024-3795(92)90448-J

‎[47] ‎ Ghosh, S. (1996). Matrices over semirings. Information sciences, 90(1–4), 221–230. ‎https://doi.org/10.1016/0020-0255(95)00283-9‎

‎[48] ‎ Wechler, W. (1978). The concept of fuzziness in automata and language theory. In The concept of ‎fuzziness in automata and language theory (p. 154). De Gruyter.‎

‎[49] ‎ Golan, J. S. (2013). Semirings and their applications. Springer Science & Business Media.‎

‎[50] ‎ Hebisch, U., & Weinert, H. J. (1998). Semirings: algebraic theory and applications in computer science (Vol. 5). ‎World Scientific.‎

‎[51] ‎ Mordeson, J. N., & Malik, D. S. (2002). Fuzzy automata and languages: theory and applications. Chapman ‎and Hall/CRC.‎

‎[52] ‎ Van Hoorn, W. G., & Van Rootselaar, B. (1967). Fundamental notions in the theory of seminearrings. ‎Compositio mathematica, 18(1–2), 65–78.‎

‎[53] Yavuz, E. (2024). Soft binary piecewise operations and their properties [Thesis]. ‎https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

‎[54] ‎ Çağman, N., Çıtak, F., & Aktaş, H. (2012). Soft int-group and its applications to group theory. Neural ‎computing and applications, 21, 151-158. https://doi.org/10.1007/s00521-011-0752-x

‎[55] ‎ Mahmood, T., Rehman, Z. U., & Sezgin, A. (2018). Lattice ordered soft near rings. Korean journal of ‎mathematics, 26(3), 503–517. https://doi.org/10.11568/kjm.2018.26.3.503‎

‎[56] ‎ Jana, C., Pal, M., Karaaslan, F., & Sezgi̇n, A. (2019). (α, β)-Soft intersectional rings and ideals with their ‎applications. New mathematics and natural computation, 15(02), 333–350. ‎https://doi.org/10.1142/S1793005719500182‎

‎[57] ‎ Mustuoglu, E., Sezgin, A., & Türk, Z. K. (2016). Some characterizations on soft uni-groups and normal ‎soft uni-groups. International journal of computer applications, 155(10), 1–8.‎

‎[58] ‎ Sezer, A. S., Çagman, N., & Atagün, A. O. (2015). Uni-soft substructures of groups. Annals of fuzzy ‎mathematics and informatics, 9(2), 235–246.‎

‎[59] ‎ Sezer, A. S. (2014). Certain characterizations of LA-semigroups by soft sets. Journal of intelligent & fuzzy ‎systems, 27(2), 1035–1046. DOI: 10.3233/IFS-131064‎

‎[60] ‎ Özlü, Ş., & Sezgin, A. (2020). Soft covered ideals in semigroups. Acta universitatis sapientiae, mathematica, ‎‎12(2), 317–346. DOI: 10.2478/ausm-2020-0023‎

‎[61] ‎ Atagün, A. O., & Sezgin, A. (2018). Soft subnear-rings, soft ideals and soft N-subgroups of near-rings. ‎Mathematical sciences letters, 7, 37–42. http://dx.doi.org/10.18576/msl/070106‎

‎[62] ‎ Iftikhar, M., & Mahmood, T. (2018). Some results on lattice ordered double framed soft semirings. ‎International journal of algebra and statistics, 7(1–2), 123–140. DOI:10.20454/ijas.2018.1491‎

‎[63] ‎ Mahmood, T., Waqas, A., & Rana, M. A. (2015). Soft intersectional ideals in ternary semirings. Science ‎international, 27(5), 3929-3934.‎

‎[64] ‎ Clifford, A. H. (1954). Bands of semigroups. Proceedings of the american mathematical society, 5(3), 499–504. ‎https://doi.org/10.2307/2031968‎

‎[65] ‎ Kilp, M., Knauer, U., & Mikhalev, A. V. (2011). Monoids, acts and categories: with applications to wreath ‎products and graphs. a handbook for students and researchers (Vol. 29). Walter de Gruyter.‎

‎[66] ‎ Mann, H. B. (1944). On certain systems which are almost groups. Bulletin of the American mathematical ‎society, 50(12), 879–881.‎

‎[67] ‎ Pant, S., Dagtoros, K., Kholil, M. I., & Vivas, A. (2024). Matrices: Peculiar determinant property. ‎Optimum science journal, (1), 1–7. https://doi.org/10.5281/zenodo.11266018‎

Published

2024-08-25

How to Cite

Soft Binary Piecewise Plus Operation: A New Type of Operation For Soft Sets. (2024). Uncertainty Discourse and Applications, 1(1), 79-100. https://uda.reapress.com/journal/article/view/26

Similar Articles

You may also start an advanced similarity search for this article.