The second-order constant-coefficient linear homogeneous weak fuzzy complex differential equations (WFC-DEs) and initial value problems (WFC-IVPs)

Authors

  • Lama Razouk * Department of Mathematics, Latakia University (Tishreen), Latakia, Syria
  • Suliman Mahmoud Department of Mathematics, Latakia University (Tishreen), Latakia, Syria
  • Mohamad Ali Department of Mathematics, Latakia University (Tishreen), Latakia, Syria

https://doi.org/10.48313/uda.v2i1.50

Abstract

This work aims to introduce the concept of the second-order Weak Fuzzy Complex-Differential Equations (WFC-DEs) for the first time. A special isomorphic transformation function could write a WFC-DE as two related Differential Equations (DEs) of the second order concerning their real variables. We study the second-order constant-coefficient linear homogeneous DE in a Weak Fuzzy Complex (WFC) variable with WFC constant coefficients. Also, we study the simple form of this type of WFC-DE with real constant coefficients. Thus, to find the general solution, we use the characteristic equation of the second-order DE. Also, we get a particular solution for the second-order constant-coefficient linear homogeneous Weak Fuzzy Complex-Initial Value Problem (WFC-IVP). To enhance understanding, we provide illustrative examples for each problem discussed.

Keywords:

Weak fuzzy complex numbers, Quadratic weak fuzzy complex equation, Weak fuzzy complex functions, Weak fuzzy complex differential equation, Initial value problem

References

  1. [1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

  2. [2] Wang-Jin, L. (1983). Operations on fuzzy ideals. Fuzzy sets and systems, 11(1), 31–39. https://dl.acm.org/doi/abs/10.5555/2846983.2847100

  3. [3] Sorourkhah, A., & Edalatpanah, S. A. (2022). Using a combination of matrix approach to robustness analysis (MARA) and fuzzy DEMATEL-based ANP (FDANP) to choose the best decision. International journal of mathematical, engineering and management sciences, 7(1), 68–80. https://doi.org/10.33889/IJMEMS.2022.7.1.005

  4. [4] Ihsan, M., Saeed, M., & Rahman, A. U. (2023). Optimizing hard disk selection via a fuzzy parameterized single-valued neutrosophic soft set approach. Journal of operational and strategic analytics, 1(2), 62–69. https://doi.org/10.56578/josa010203

  5. [5] Abdi, G. H., Refahi Sheikhani, A. H., Kordrostami, S., & Babaie, S. (2023). A novel selfish node detection based on fuzzy system and game theory in internet of things. Fuzzy optimization and modeling journal, 4(4), 32–47. https://doi.org/10.30495/fomj.2024.1996589.1122

  6. [6] Ghobadi, A., Tavakkoli Moghadam, R., Fallah, M., & Kazemipoor, H. (2021). Multi-depot electric vehicle routing problem with fuzzy time windows and pickup/delivery constraints. Journal of applied research on industrial engineering, 8(1), 1-18. https://doi.org/10.22105/jarie.2021.231764.1165

  7. [7] Rahimi Ghazikalayeh, A., Amirafshari, M., Mkrchyan, H. M., & Taji, M. (2013). Application of fuzzy hybrid analytic network process in equipment selection of open-pit metal mines. International journal of research in industrial engineering, 2(3), 35–46. http://www.riejournal.com/article_47953.html

  8. [8] Halder, P. K., Karmaker, C. L., Kundu, B., & Daniel, T. (2018). Evaluation of factors affecting the productivity of RMG in Bangladesh : A fuzzy AHP approach. International journal of research in industrial engineering, 7(1), 51–60. https://doi.org/10.22105/riej.2017.94987.1011

  9. [9] El-Morsy, S. (2023). Stock portfolio optimization using pythagorean fuzzy numbers. Journal of operational and strategic analytics, 1(1), 8–13. https://doi.org/10.56578/josa010205josa010205

  10. [10] Hatip, A. (2023). An introduction to weak fuzzy complex numbers. Galoitica: journal of mathematical structures and applications, 3(2), 08–13. https://doi.org/10.54216/gjmsa.030101

  11. [11] Hatip, A. (2023). On the fuzzy weak complex vector spaces. Galoitica: journal of mathematical structures and applications, 3(1), 29–32. https://doi.org/10.54216/gjmsa.030105

  12. [12] Ali, R. (2023). On the weak fuzzy complex inner products on weak fuzzy complex vector spaces. Neoma journal of mathematics and computer science, 1. https://doi.org/10.5281/zenodo.7953682

  13. [13] Alhasan, Y. A., Alfahal, A. M. A., Abdulfatah, R. A., Nordo, G., & Zahra, M. M. A. (2023). On some novel results about weak fuzzy complex matrices. International journal of neutrosophic science, 21(1), 134–140. https://doi.org/10.54216/IJNS.210112

  14. [14] Abualhomos, M., Salameh, W. M. M., Bataineh, M., Al-Qadri, M. O., Alahmade, A., & Al-Husban, A. (2024). An effective algorithm for solving weak fuzzy complex diophantine equations in two variables. International journal of neutrosophic science, 23(4), 386–394. https://doi.org/10.54216/IJNS.230431

  15. [15] Alfahal, A. M. A., Abobala, M., Alhasan, Y. A., & Abdulfatah, R. A. (2023). Generating weak fuzzy complex and anti weak fuzzy complex integer solutions for pythagoras diophantine equation X2 + Y2 = Z2. International journal of neutrosophic science, 22(2), 8–14. https://doi.org/10.54216/IJNS.220201

  16. [16] Galarza, F. C., Flores, M. L., Rivero, D. P., & Abobala, M. (2023). On weak fuzzy complex pythagoras quadruples. International journal of neutrosophic science, 22(2), 108–113. https://doi.org/10.54216/IJNS.220209

  17. [17] Abobala, M. (2024). On some novel results about weak fuzzy complex integers. Journal of neutrosophic and fuzzy systems, 15-22. https://doi.org/10.54216/JNFS.080202

  18. [18] Alhasan, Y. A., Xu, L., Abdulfatah, R. A., & Alfahal, A. M. A. (2023). The geometrical characterization for the solutions of a vectorial equation by using weak fuzzy complex numbers and other generalizations of real numbers. International journal of neutrosophic science, 21(4), 155–159. https://doi.org/10.54216/IJNS.210415

  19. [19] Shihadeh, A., Salameh, W. M. M., Bataineh, M., Al-Tarawneh, H., Alahmade, A., & Al-Husban, A. (2024). On the geometry of weak fuzzy complex numbers and applications to the classification of some a-curves. International journal of neutrosophic science, 23(4), 369–375. https://doi.org/10.54216/IJNS.230428

  20. [20] Razouk, L., Mahmoud, S., & Ali, M. (2023). A computer program for the system of weak fuzzy complex numbers and their arithmetic operations using Python. Galoitica: journal of mathematical structures and applications, 8(1), 45–51. https://doi.org/10.54216/gjmsa.080104

  21. [21] Razouk, L., Mahmoud, S., & Ali, M. (2024). On the foundations of weak fuzzy complex-real functions. Journal of fuzzy extension and applications, 5(1), 116–140. https://doi.org/10.22105/jfea.2024.435955.1369

  22. [22] Edduweh, H., Heilat, A. S., Razouk, L., Khalil, S. A., Alsaraireh, A. A., & Al-Husban, A. (2025). On the weak fuzzy complex differential equations and some types of the 1st order 1st degree WFC-ODEs. International journal of neutrosophic science, 25(3), 450–468. https://doi.org/10.54216/IJNS.250338

  23. [23] Hatamleh, R. (2025). On a novel topological space based on partially ordered ring of weak fuzzy complex numbers and its relation with the partially ordered neutrosophic ring of real numbers. Neutrosophic sets and systems, 78(1), 577-590. https://digitalrepository.unm.edu/nss_journal/vol78/iss1/31/

  24. [24] Khalil, H. K., & Grizzle, J. W. (2002). Nonlinear systems. Prentice Hall. https://testbankdeal.com/sample/nonlinear-systems-3rd-edition-khalil-solutions-manual.pdf

  25. [25] Warner, T. T. (2010). Numerical weather and climate prediction. Cambridge University Press. https://doi.org/10.1017/CBO9780511763243

  26. [26] John C Hull, S. B. (1988). Options, futures, and other derivatives. Pearson India. file:///C:/Users/NoteBook/Downloads/Options,%20Futures%20and%20Other%20Derivatives%208th%20John%20Hull%20(1).pdf

  27. [27] Burden, R. L. & Faires, J. D. (2010). Numerical analysis. Cengage Learning. https://pdfcoffee.com/numerical-analysis-9th-edition-pdf-free.html

  28. [28] Egede, U. (2018). Complex analysis & differential equations. https://marksphysicshelp.com/wp-content/uploads/2019/04/complexanalysisnotes2.pdf

Published

2024-03-17

How to Cite

Razouk, L. ., Mahmoud, S. ., & Ali, M. . (2024). The second-order constant-coefficient linear homogeneous weak fuzzy complex differential equations (WFC-DEs) and initial value problems (WFC-IVPs). Uncertainty Discourse and Applications, 2(1), 1-16. https://doi.org/10.48313/uda.v2i1.50

Similar Articles

11-17 of 17

You may also start an advanced similarity search for this article.