Application of brute force algorithm optimization as an industrial hotspot in inventory management and control
Abstract
The primary challenge in inventory management is to strike a balance between maintaining optimal inventory levels to meet customer demand while minimizing holding costs. Traditional inventory management techniques often fall short of achieving this balance, leading to inefficiencies and increased costs for industrial organizations. The need for more efficient and effective inventory management solutions has led to the exploration of optimization algorithms, such as the Brute Force Algorithm, as a potential solution to this problem. To investigate the application of the Brute Force Algorithm in inventory management and control, a comprehensive review was conducted on Brute Force Algorithm optimization for warehouse layout, inventory replenishment, risk identification and opportunities, demand planning, inventory forecasting and recent trends. Information was gathered from online databases and relevant literature from library sources. Results of the study revealed that the Brute Force Algorithm can significantly improve inventory management and control in the manufacturing company. By optimizing the processes, this algorithm can reduce excess inventory levels and holding costs while ensuring that customer demand is met efficiently. The study further indicated that implementation of this algorithm could cause a reduction in stock-outs and backorders, improving overall customer satisfaction. The findings also suggested that the Brute Force Algorithm can be a valuable tool for industrial organizations looking to enhance their inventory management processes. By optimizing inventory levels through this algorithm, companies can achieve a better balance between supply and demand, leading to increased profitability and customer satisfaction.
Keywords:
Brute force, Algorithm, Inventory management, Industrial hotspot, OptimizationReferences
- [1] Oh, T. H., Choi, Y. B., & Chouta, R. (2012). Supply chain management for generic and military applications using RFID. International journal of future generation communication and networking, 5(1), 61. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3ad472d289f41438543e7b5a4573139d1a6f4e05
- [2] Liu, Y. H., Liu, T., Huang, Y., Ding, H., Xi, W., & Gong, W. (2023). CRC-based reliable wifi backscatter communiation for supply chain management. Applied sciences, 13(9). https://doi.org/10.3390/app13095471
- [3] Ekanem, I. I., Ohwoekevwo, J. U., & Ikpe, A. E. (2024). Conjectures of computer vision technology (CVT) on industrial information management systems (IMSs): A futuristic Gaze. Metaheuristic algorithms with applications, 1(1), 20–34. https://maa.reapress.com/journal/article/view/20
- [4] Robinson, A. C., & Quinn, S. D. (2018). A brute force method for spatially-enhanced multivariate facet analysis. Computers, environment and urban systems, 69, 28–38. https://doi.org/10.1016/j.compenvurbsys.2017.12.003
- [5] Abu Khurma, R., Aljarah, I., Sharieh, A., Abd Elaziz, M., Damaševičius, R., & Krilavičius, T. (2022). A review of the modification strategies of the nature inspired algorithms for feature selection problem. Mathematics, 10(3). https://doi.org/10.3390/math10030464
- [6] Liang, L., & Atkins, D. (2013). Designing service level agreements for inventory management. Production and operations management, 22(5), 1103–1117. https://doi.org/10.1111/poms.12033
- [7] Duan, Q., & Warren Liao, T. (2013). Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands. International journal of production economics, 142(1), 194–204. https://doi.org/10.1016/j.ijpe.2012.11.004
- [8] Maitra, S. (2024). A system-dynamic based simulation and Bayesian optimization for inventory management. ArXiv Preprint ArXiv:2402.10975.
- [9] Ikpe, A., & Ekanem, I. (2024). Adoption of machine learning in streamlining maintenance strategies for effective operations in automotive industries. Big data and computing visions, 4, 180–200. http://dx.doi.org/10.22105/bdcv.2024.476761.1187
- [10] Boute, R. N., & Udenio, M. (2023). AI in logistics and supply chain management. In global logistics and supply chain strategies for the 2020s: vital skills for the next generation (pp. 49–65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95764-3_3
- [11] Ikpe, A. E., Ekanem, I. I., & Ohwoekevwo, J. U. (2024). Integration of internet of things in conventional vehicle technology and its synergy with vehicle telematics systems and fleet management sequence. Smart internet of things, 1(1), 31–53. https://www.siot.reapress.com/journal/article/view/27
- [12] A study on IoT-enabled smart vehicles for road navigation and ride comfortability in contemporary vehicle applications. (2025). Soft computing fusion with applications, 1(2), 58–75. https://doi.org/10.22105/r5resa48
- [13] Ahmed, D., Hassan, M., & Mstafa, R. (2022). A review on deep sequential models for forecasting time series data. Applied computational intelligence and soft computing, 2022. http://dx.doi.org/10.1155/2022/6596397
- [14] Sarker, I. H. (2021). Machine learning: Algorithms, Real-World Applications and Research Directions. SN computer science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
- [15] Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in operations research and management science, 21(2), 101–116. https://doi.org/10.1016/j.sorms.2016.10.002
- [16] Taimoor, S., Ferdouse, L., & Ejaz, W. (2022). Holistic resource management in UAV-assisted wireless networks: An optimization perspective. Journal of network and computer applications, 205, 103439. https://doi.org/10.1016/j.jnca.2022.103439
- [17] Cesur, E., Cesur, M. R., & Abraham, A. (2024). Enhanced branch and bound algorithm: minimizing subproblem complexity in power dispatch. IEEE access, 12, 93753–93760. https://doi.org/10.1109/ACCESS.2024.3422261
- [18] Shokry, S., Tanaka, S., Nakamura, F., Ariyoshi, R., & Miura, S. (2018). Bandwidth maximization approach for displaced left-turn crossovers coordination under heterogeneous traffic conditions. Journal of traffic and transportation engineering, 6, 183–196. http://dx.doi.org/10.17265/2328-2142/2018.04.004
- [19] Vadiyala, V. R., & Baddam, P. R. (2018). Exploring the symbiosis: Dynamic programming and its relationship with data structures. Asian journal of applied science and engineering, 7(1), 101–112. https://pdfs.semanticscholar.org/df8d/966e3043f17e6c9aa301f232964035d898af.pdf
- [20] Park, S., Lee, W., Choe, B., & Lee, S.-G. (2019). A survey on personalized pagerank computation algorithms. IEEE access, 7, 163049–163062. https://doi.org/10.1109/ACCESS.2019.2952653
- [21] Hjeij, M., & Vilks, A. (2023). A brief history of heuristics: how did research on heuristics evolve? Humanities and social sciences communications, 10(1), 64. https://doi.org/10.1057/s41599-023-01542-z
- [22] Oliker, N., & Bekhor, S. (2020). An infeasible start heuristic for the transit route network design problem. Transportmetrica a: transport science, 16, 1–32. http://dx.doi.org/10.1080/23249935.2020.1719551
- [23] Navarro, C. A., Hitschfeld-Kahler, N., & Mateu, L. (2014). A survey on parallel computing and its applications in data-parallel problems using GPU architectures. Communications in computational physics, 15(2), 285–329. https://www.cambridge.org/core/journals/communications-in-computational-physics/article/survey-on-parallel-computing-and-its-applications-in-dataparallel-problems-using-gpu-architectures/879D964A36478175DEED99FB00C8D811
- [24] Guo, C., Li, L., Hu, Y., & Yan, J. (2020). A deep learning based fault diagnosis method with hyperparameter optimization by using parallel computing. IEEE access, 8, 131248–131256. https://doi.org/10.1109/ACCESS.2020.3009644
- [25] Zamri, N. E., Azhar, S. A., Sidik, S. S. M., Mansor, M. A., Kasihmuddin, M. S. M., Pakruddin, S. P. A., … & Nawi, S. N. M. (2022). Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability. Neural computing and applications, 34(21), 19283–19311. https://doi.org/10.1007/s00521-022-07541-6
- [26] Radhakrishnan, P., Prasad, V. M., & Gopalan, M. R. (2009). Inventory optimization in supply chain management using genetic algorithm. International journal of computer science and network security, 9(1), 33–40. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b6e062420c537f8c843f6b4220bd0955fb02b787
- [27] Mahjoob, M., Fazeli, S. S., Milanlouei, S., Tavassoli, L. S., & Mirmozaffari, M. (2022). A modified adaptive genetic algorithm for multi-product multi-period inventory routing problem. Sustainable operations and computers, 3, 1–9. https://doi.org/10.1016/j.susoc.2021.08.002
- [28] Goltsos, T. E., Syntetos, A. A., Glock, C. H., & Ioannou, G. (2022). Inventory – forecasting: Mind the gap. European journal of operational research, 299(2), 397–419. https://doi.org/10.1016/j.ejor.2021.07.040
- [29] Kaynov, I., van Knippenberg, M., Menkovski, V., van Breemen, A., & van Jaarsveld, W. (2024). Deep reinforcement learning for one-warehouse multi-retailer inventory management. International journal of production economics, 267, 109088. https://doi.org/10.1016/j.ijpe.2023.109088
- [30] Gonçalves, J. N. C., Sameiro Carvalho, M., & Cortez, P. (2020). Operations research models and methods for safety stock determination: A review. Operations research perspectives, 7, 100164. https://doi.org/10.1016/j.orp.2020.100164
- [31] Hasani, A., Eskandarpour, M., & Fattahi, M. (2018). A simulation-based optimisation approach for multi-objective inventory control of perishable products in closed-loop supply chains under uncertainty. International journal of advanced operations management, 10(4), 324–344. https://doi.org/10.1504/IJAOM.2018.097268
- [32] Teerasoponpong, S., & Sopadang, A. (2022). Decision support system for adaptive sourcing and inventory management in small- and medium-sized enterprises. Robotics and computer-integrated manufacturing, 73, 102226. https://doi.org/10.1016/j.rcim.2021.102226
- [33] Yahia, H. S., Zeebaree, S. R., Sadeeq, M. A., Salim, N. O., Kak, S. F., Adel, A. Z., … & Hussein, H. A. (2021). Comprehensive survey for cloud computing based nature-inspired algorithms optimization scheduling. Asian journal of research in computer science, 8(2), 1–16. https://doi.org/10.9734/AJRCOS/2021/v8i230195
- [34] Xia, Y., Yang, M.-H., Golany, B., Gilbert, S. M., & Yu, G. (2004). Real-time disruption management in a two-stage production and inventory system. IIE transactions, 36(2), 111–125. https://www.tandfonline.com/doi/abs/10.1080/07408170490245379
- [35] Zhang, H., Shi, C., & Chao, X. (2016). Technical note—approximation algorithms for perishable inventory systems with setup costs. Operations research, 64(2), 432–440. https://doi.org/10.1287/opre.2016.1485
- [36] Žic, J., & Žic, S. (2020). Multi-criteria decision making in supply chain management based on inventory levels, environmental impact and costs. Advances in production engineering & management, 15(2), 151–163. https://doi.org/10.14743/apem2020.2.355
- [37] Lee, W. Q., Chua, T. J., Katru, R. K., & Cai, T. X. (2022). Implementing distribution requirement planning and scheduling system for lens manufacturing company. 2022 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 701–705). IEEE. https://doi.org/10.1016/S0927-0507(03)11012-2
- [38] de Kok, T. G., & Fransoo, J. C. (2003). Planning supply chain operations: definition and comparison of planning concepts. In Supply chain management: Design, coordination and operation (Vol. 11, pp. 597–675). Elsevier. https://doi.org/10.1016/S0927-0507(03)11012-2
- [39] Si, B., Tian, Z., Jin, X., Zhou, X., & Shi, X. (2019). Ineffectiveness of optimization algorithms in building energy optimization and possible causes. Renewable energy, 134, 1295–1306. https://doi.org/10.1016/j.renene.2018.09.057
- [40] Houssein, E. H., Saeed, M. K., Hu, G., & Al-Sayed, M. M. (2024). Metaheuristics for solving global and engineering optimization problems: review, applications, open issues and challenges. Archives of computational methods in engineering, 31(8), 4485–4519. https://doi.org/10.1007/s11831-024-10168-6
- [41] Muñoz, M. A., Sun, Y., Kirley, M., & Halgamuge, S. K. (2015). Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. Information sciences, 317, 224–245. https://doi.org/10.1016/j.ins.2015.05.010
- [42] Azzi, A., Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2014). Inventory holding costs measurement: a multi-case study. The international journal of logistics management, 25(1), 109–132. https://doi.org/10.1108/IJLM-01-2012-0004
- [43] Silva, P. M., Gonçalves, J. N. C., Martins, T. M., Marques, L. C., Oliveira, M., Reis, M. I., … & Fernandes, J. M. (2022). A hybrid bi-objective optimization approach for joint determination of safety stock and safety time buffers in multi-item single-stage industrial supply chains. Computers & industrial engineering, 168, 108095. https://doi.org/10.1108/IJLM-01-2012-0004
- [44] Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability engineering & system safety, 91(9), 992–1007. https://doi.org/10.1016/j.ress.2005.11.018
- [45] Aro-Gordon, S., & Gupte, J. (2016). Review of modern inventory management techniques. Global journal of business & management, 1(2), 1–22. https://www.researchgate.net/profile/Stephen-Aro-Gordon/publication/307966411_Review_of_modern_inventory_management_techniques/links/57d41a6608ae6399a3921fbb/Review-of-modern-inventory-management-techniques.pdf
- [46] Aro-Gordon, S., & Gupte, J. (2016). Contemporary inventory management techniques: A conceptual investigation [presentation]. Proceedings of the international conference on operations management and research (pp. 21–22). https://www.academia.edu/download/59015138/con_ROL_Inventory_ICOMAR1620190424-80486-19bm05t.pdf
- [47] Li, S., & Amenta, N. (2015). Brute-force k-nearest neighbors search on the gpu. In similarity search and applications (pp. 259–270). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25087-8_25
- [48] Begum, N., Ulanova, L., Wang, J., & Keogh, E. (2015). Accelerating dynamic time warping clustering with a novel admissible pruning strategy [presentation]. Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining (pp. 49–58). https://dl.acm.org/doi/abs/10.1145/2783258.2783286
- [49] Ali, I., Modibbo, U. M., Bolaji, A. L., & Garg, H. (2024). Optimization and computing using intelligent data-driven approaches for decision-making: Optimization applications. CRC Press. https://doi.org/10.1201/9781003503057
- [50] Phillipson, F. (2024). Quantum computing in logistics and supply chain management-an overview. ArXiv Preprint ArXiv:2402.17520.
- [51] Mohan, M., Ayyalasomayajula, T., & Ayyalasomayajula, S. (2021). Proactive scaling strategies for cost-efficient hyperparameter optimization in cloud-based machine learning models: A comprehensive review. ESP Journal of engineering & technology advancements,1(2), 42-56. https://www.espjeta.org/jeta-v1i2p108
- [52] Mahoor, M., Salmasi, F. R., & Najafabadi, T. A. (2017). A hierarchical smart street lighting system with brute-force energy optimization. IEEE sensors journal, 17(9), 2871–2879. https://doi.org/10.1109/JSEN.2017.2684240
- [53] Lustick, I. S., & Tetlock, P. E. (2021). The simulation manifesto: The limits of brute-force empiricism in geopolitical forecasting. Futures & foresight science, 3(2), e64. https://doi.org/10.1002/ffo2.64
- [54] Ntakolia, C., Kokkotis, C., Karlsson, P., & Moustakidis, S. (2021). An explainable machine learning model for material backorder prediction in inventory management. Sensors, 21(23). https://doi.org/10.3390/s21237926
- [55] Alsharef, A., Aggarwal, K., Sonia, Kumar, M., & Mishra, A. (2022). Review of ML and AutoML solutions to forecast time-series data. Archives of computational methods in engineering, 29(7), 5297–5311. https://doi.org/10.1007/s11831-022-09765-0
- [56] Brusset, X., La Torre, D., & Broekaert, J. (2022). Chapter 6 - algorithms, analytics, and artificial intelligence: harnessing data to make supply chain decisions. In the digital supply chain (pp. 93–110). Elsevier. https://doi.org/10.1016/B978-0-323-91614-1.00006-X
- [57] Sousa, M. S., Loureiro, A. L. D., & Miguéis, V. L. (2025). Predicting demand for new products in fashion retailing using censored data. Expert systems with applications, 259, 125313. https://doi.org/10.1016/j.eswa.2024.125313
- [58] Jahin, M. A., Shovon, M. S. H., Shin, J., Ridoy, I. A., & Mridha, M. F. (2024). Big data—supply chain management framework for forecasting: data preprocessing and machine learning techniques. Archives of computational methods in engineering, 31(6), 3619–3645. https://doi.org/10.1007/s11831-024-10092-9
- [59] Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., … & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-science reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225
- [60] Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. Emerging technology in modelling and graphics (pp. 99–111). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-7403-6_11
- [61] Bekker, J., & Aldrich, C. (2011). The cross-entropy method in multi-objective optimisation: An assessment. European journal of operational research, 211(1), 112–121. https://doi.org/10.1016/j.ejor.2010.10.028
- [62] Ilham, M. N., Arbansyah, A., Suryawan, S. H., & Wirayuda, P. (2020). Application of bubble sort optimization in new student admission selection using brute force algorithm. Tepian, 5(2), 568771. https://media.neliti.com/media/publications/568771-application-of-bubble-sort-optimization-1d72b36e.pdf
- [63] Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: A review, new developments, and applications. Proceedings of the winter simulation conference, 2005. (p. 13). IEEE. https://ieeexplore.ieee.org/abstract/document/1574242/
- [64] Bécue, A., Praça, I., & Gama, J. (2021). Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artificial intelligence review, 54(5), 3849–3886. https://doi.org/10.1007/s10462-020-09942-2
- [65] Jo, H. J., & Yoon, J. W. (2015). A new countermeasure against brute-force attacks that use high performance computers for big data analysis. International journal of distributed sensor networks, 11(6), 406915. https://doi.org/10.1155/2015/406915
- [66] Anand, R., Jain, V., Singh, A., Rahal, D., Rastogi, P., Rajkumar, A., & Gupta, A. (2023). Clustering of big data in cloud environments for smart applications. In Integration of iot with cloud computing for smart applications (pp. 227–247). Chapman and Hall/CRC. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003319238-14/clustering-big-data-cloud-environments-smart-applications-rohit-anand-vipin-jain-anushi-singh-disha-rahal-prachi-rastogi-avinash-rajkumar-ankur-gupta
- [67] Nikolic, N., Zarkic-Joksimovic, N., Stojanovski, D., & Joksimovic, I. (2013). The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert systems with applications, 40(15), 5932–5944. https://doi.org/10.1016/j.eswa.2013.05.022
- [68] Breur, T. (2011). Data analysis across various media: Data fusion, direct marketing, clickstream data and social media. Journal of direct, data and digital marketing practice, 13(2), 95–105. https://doi.org/10.1057/dddmp.2011.32
- [69] Ross, D. F., & Ross, D. F. (1996). Replenishment inventory planning. In Distribution: planning and control (pp. 263–319). Springer. https://doi.org/10.1007/978-1-4684-0015-1
- [70] Schütz, M., Kerbl, B., & Wimmer, M. (2021). Rendering point clouds with compute shaders and vertex order optimization. Computer graphics forum (Vol. 40, pp. 115–126). Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14345
- [71] Siraj, M., Naseem, A., Maryam, M., & Asad, J. (2024). Optimizing inventory management: A comprehensive analysis of economic order quantity, lot size, safety stock, and reordering quantity strategies. Journal of business administration and management sciences (JOBAMS), 6(1), 8–16. http://jobams.smiu.edu.pk/index.php/jobams/article/view/123
- [72] Gallego-García, D., Gallego-García, S., & García-García, M. (2021). An optimized system to reduce procurement risks and stock-outs: A simulation case study for a component manufacturer. Applied sciences, 11(21). https://doi.org/10.3390/app112110374
- [73] Feng, J. (2022). Optimal control strategy model of marketing management based on consumer psychology. Mathematical problems in engineering, 2022(1), 8689244. https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/8689244
- [74] Didwania, R., Verma, R., & Dhanda, N. (2024). Future ahead for supply chain management. In Supply chain management (pp. 283–310). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509561-15/future-ahead-supply-chain-management-rishabh-didwania-rajat-verma-namrata-dhanda
- [75] Kordos, M., Boryczko, J., Blachnik, M., & Golak, S. (2020). Optimization of warehouse operations with genetic algorithms. Applied sciences, 10(14), 4817. https://www.mdpi.com/2076-3417/10/14/4817
- [76] Zhou, L., Liu, H., Zhao, J., Wang, F., & Yang, J. (2022). Performance analysis of picking routing strategies in the leaf layout warehouse. Mathematics, 10(17), 3149. https://www.mdpi.com/2227-7390/10/17/3149
- [77] Hannan, M. A., Faisal, M., Jern Ker, P., Begum, R. A., Dong, Z. Y., & Zhang, C. (2020). Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renewable and sustainable energy reviews, 131, 110022. https://doi.org/10.1016/j.rser.2020.110022
- [78] Bahadori, M. S., Gonçalves, A. B., & Moura, F. (2021). A systematic review of station location techniques for bicycle-sharing systems planning and operation. ISPRS international journal of geo-information, 10(8). https://doi.org/10.3390/ijgi10080554
- [79] Islam, S., & Uddin, K. (2023). Correlated storage assignment approach in warehouses: A systematic literature review. Journal of industrial engineering and management, 16(2), 294–318. https://upcommons.upc.edu/handle/2117/395175
- [80] Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: review, challenges, design, and development. Applied sciences, 11(14). https://doi.org/10.3390/app11146449