A study on energy efficient routing in smart water distribution network using the ACO algorithm

Authors

  • Abhisek Mishra * School of Computer Engineering, KIIT (Deemed to Be) University, Bhubaneswar - 751024, Odisha, India
  • Anurag Mukherjee School of Computer Engineering, KIIT (Deemed to Be) University, Bhubaneswar - 751024, Odisha, India

https://doi.org/10.48313/uda.v1i2.44

Abstract

This study explores energy-efficient routing methods in smart water distribution networks using the Ant Colony Optimization (ACO) algorithm. With the growing need for optimal water resource management in smart cities, the use of metaheuristic algorithms for improving energy efficiency has gained significance. In this research, an ACO-based routing model is proposed to minimize energy consumption in water distribution systems. Through various simulations, the performance of this approach is evaluated in comparison to traditional methods. The results indicate that the proposed approach reduces energy consumption, enhances network reliability, and optimizes water distribution routes.

Keywords:

Water distribution network, Smart city, Ant colony optimization, Energy efficiency, Water resource management

References

  1. [1] Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the smart city performance. Innovation: the european journal of social science research, 25(2), 137–149. https://doi.org/10.1080/13511610.2012.660325

  2. [2] Colldahl, C., Frey, S., & Kelemen, J. E. (2013). Smart cities : strategic sustainable development for an urban world. https://www.semanticscholar.org/paper/Smart-Cities-%3A-Strategic-Sustainable-Development-an-Colldahl-Frey/e3e37c92f2bc9e3929c45d86448f2f84bfa2417d

  3. [3] Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, N., & Meijers, E. J. (2007). Smart cities. Ranking of European medium-sized cities. https://repositum.tuwien.at/bitstream/20.500.12708/153435/1/Giffinger-2007-Smart%20cities.%20Ranking%20of%20European%20medium-sized%20cities.%20Fin...-vor.pdf

  4. [4] Dey, D., Majumder, A., Agrawal, Y., Tewari, S., & Mohapatra, H. (2025). Smart mobility revolution: harnessing IoT, sensors, and cloud computing for intelligent automobiles in the urban landscape. In Sustainable smart cities and the future of urban development (pp. 143–164). IGI Global Scientific Publishing. https://doi.org/ 10.4018/979-8-3693-6740-7.ch006

  5. [5] Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions [presentation]. ACM international conference proceeding series (pp. 282–291). https://doi.org/10.1145/2037556.2037602

  6. [6] Sah, R. K., Singh, A. K., Yadav, A. K., & Mohapatra, H. (2025). Cloud-enabled platforms for social and civic engagement in smart urban environments. In Sustainable smart cities and the future of urban development (pp. 215–234). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6740-7.ch009

  7. [7] Christodoulou, S. E., & Ellinas, G. (2010). Pipe routing through ant colony optimization. Journal of infrastructure systems, 16(2), 149–159. https://doi.org/10.1061/(asce)1076-0342(2010)16:2(149)

  8. [8] Priyadarshi, S., Subudhi, S., Kumar, S., Bhardwaj, D., & Mohapatra, H. (2025). Analysis on enhancing urban mobility with IoT-integrated parking solutions. In Interdisciplinary approaches to transportation and urban planning (pp. 143–172). IGI Global. https://doi.org/10.4018/979-8-3693-6695-0.ch006

  9. [9] Ramos, H. M., McNabola, A., López-Jiménez, P. A., & Pérez-Sánchez, M. (2020). Smart water management towards future water sustainable networks. Water, 12(1), 58. https://doi.org/10.3390/w12010058

  10. [10] Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in India by using smart taps and ICT. IET wireless sensor systems, 9(6), 447–457. https://doi.org/10.1049/iet-wss.2019.0081

  11. [11] Hellström, D., Jeppsson, U., & Kärrman, E. (2000). A framework for systems analysis of sustainable urban water management. Environmental impact assessment review, 20(3), 311–321. https://doi.org/10.1016/S0195-9255(00)00043-3

  12. [12] Howell, S., Rezgui, Y., & Beach, T. (2017). Integrating building and urban semantics to empower smart water solutions. Automation in construction, 81, 434–448. https://doi.org/10.1016/j.autcon.2017.02.004

  13. [13] Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET networks, 9(4), 145–155. https://doi.org/10.1049/iet-net.2019.0155

  14. [14] Mounce, S. R., Pedraza, C., Jackson, T., Linford, P., & Boxall, J. B. (2015). Cloud based machine learning approaches for leakage assessment and management in smart water networks. Procedia engineering, 119(1), 43–52. https://doi.org/10.1016/j.proeng.2015.08.851

  15. [15] Karthik, M., Gunapriya, B., Vivek, P. N., Vishalakshi, A., & Gayathiri, M. (2019). E-metering and fault detection in smart water distribution systems using wireless network. International journal of innovative technology and exploring engineering, 89(11), 634–639. https://doi.org/10.35940/ijitee.K1604.0981119

  16. [16] Gunapriya, B., Sabrigiriraj, M., Karthik, M., Deepa, B., & Devi, R. N. (2017). Power electronic drives and control technology status: brief review. Proceedings of 2nd international conference on intelligent computing and applications: ICICA 2015 (pp. 493–512). Springer. https://doi.org/10.1007/978-981-10-1645-5_42

  17. [17] Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture: networking among all agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1), 407–424. https://doi.org/10.1007/s12652-021-02908-4

  18. [18] Cosgrove, W. J., & Loucks, D. P. (2015). Water management: current and future challenges and research directions. Water resources research, 51(6), 4823–4839. https://doi.org/10.1002/2014WR016869

  19. [19] Swamee, P. K., & Sharma, A. K. (2008). Design of Water Supply Pipe Networks. John Wiley & Sons. https://doi.org/10.1002/9780470225059

  20. [20] Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking system. International journal of sensor networks, 37(4), 219–232. https://doi.org/10.1504/IJSNET.2021.119483

  21. [21] Sangroula, U., Han, K. H., Koo, K. M., Gnawali, K., & Yum, K. T. (2022). Optimization of water distribution networks using genetic algorithm based SOP–WDN program. Water, 14(6), 851. https://doi.org/10.3390/w14060851

  22. [22] López-Ibáñez, M., Prasad, T. D., & Paechter, B. (2008). Ant colony optimization for optimal control of pumps in water distribution networks. Journal of water resources planning and management, 134(4), 337–346. https://doi.org/10.1061/(asce)0733-9496(2008)134:4(337)

  23. [23] Puris, A., Bello, R., & Herrera, F. (2010). Analysis of the efficacy of a Two-Stage methodology for ant colony optimization: case of study with TSP and QAP. Expert systems with applications, 37(7), 5443–5453. https://doi.org/10.1016/j.eswa.2010.02.069

  24. [24] Huang, S. J. (2001). Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches. IEEE transactions on energy conversion, 16(3), 296–301. https://doi.org/10.1109/60.937211

  25. [25] Jalali, M. R., Afshar, A., & Mariño, M. A. (2006). Improved ant colony optimization algorithm for reservoir operation. Scientia iranica, 13(3), 295–302. file:///C:/Users/NoteBook/Downloads/95520060303.pdf

  26. [26] Kumar, D. N., & Reddy, M. J. (2006). Ant colony optimization for multi-purpose reservoir operation. Water resources management, 20(6), 879–898. https://doi.org/10.1007/s11269-005-9012-0

  27. [27] Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial life, 5(2), 137–172. https://doi.org/10.1162/106454699568728

  28. [28] Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., & Price, K. V. (1999). New ideas in optimization. McGraw-Hill Ltd., UK. https://dl.acm.org/doi/abs/10.5555/329055

  29. [29] Afshar, A., Massoumi, F., Afshar, A., & Mariño, M. A. (2015). State of the art review of ant colony optimization applications in water resource management. Water resources management, 29(11), 3891–3904. https://doi.org/10.1007/s11269-015-1016-9

  30. [30] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE transactions on systems, man, and cybernetics, part b: cybernetics, 26(1), 29–41. https://doi.org/10.1109/3477.484436

  31. [31] Simpson, A. R., Maier, H. R., Foong, W. K., Phang, K. Y., Seah, H. Y., & Tan, C. L. (2001). Selection of parameters for ant colony optimization applied to the optimal design of water distribution systems [presentation]. Proc. int. congress on modeling and simulation (pp. 1931–1936). https://www.researchgate.net/publication/256103267_Selection_of_Parameters_for_Ant_Colony_Optimisation_Applied_to_the_Optimal_Design_of_Water_Distribution_Systems

  32. [32] Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., & Tan, C. L. (2003). Ant colony optimization for design of water distribution systems. Journal of water resources planning and management, 129(3), 200–209. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)

Published

2025-12-22

How to Cite

A study on energy efficient routing in smart water distribution network using the ACO algorithm. (2025). Uncertainty Discourse and Applications, 1(2), 237-244. https://doi.org/10.48313/uda.v1i2.44

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.