Application of brute force algorithm optimization as an industrial hotspot in inventory management and control

Authors

  • Aniekan Essienubong Ikpe * Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria
  • Imoh Ime Ekanem Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria
  • Ikechukwu Bismark Owunna Department of Mechanical Engineering, University of Benin, Benin City, PMB. 1154, Nigeria

https://doi.org/10.48313/uda.v1i2.43

Abstract

The primary challenge in inventory management is to strike a balance between maintaining optimal inventory levels to meet customer demand while minimizing holding costs. Traditional inventory management techniques often fall short of achieving this balance, leading to inefficiencies and increased costs for industrial organizations. The need for more efficient and effective inventory management solutions has led to the exploration of optimization algorithms, such as the Brute Force Algorithm, as a potential solution to this problem. To investigate the application of the Brute Force Algorithm in inventory management and control, a comprehensive review was conducted on Brute Force Algorithm optimization for warehouse layout, inventory replenishment, risk identification and opportunities, demand planning, inventory forecasting and recent trends. Information was gathered from online databases and relevant literature from library sources. Results of the study revealed that the Brute Force Algorithm can significantly improve inventory management and control in the manufacturing company. By optimizing the processes, this algorithm can reduce excess inventory levels and holding costs while ensuring that customer demand is met efficiently. The study further indicated that implementation of this algorithm could cause a reduction in stock-outs and backorders, improving overall customer satisfaction. The findings also suggested that the Brute Force Algorithm can be a valuable tool for industrial organizations looking to enhance their inventory management processes. By optimizing inventory levels through this algorithm, companies can achieve a better balance between supply and demand, leading to increased profitability and customer satisfaction.    

Keywords:

Brute force, Algorithm, Inventory management, Industrial hotspot, Optimization

References

  1. [1] Oh, T. H., Choi, Y. B., & Chouta, R. (2012). Supply chain management for generic and military applications using RFID. International journal of future generation communication and networking, 5(1), 61. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3ad472d289f41438543e7b5a4573139d1a6f4e05

  2. [2] Liu, Y. H., Liu, T., Huang, Y., Ding, H., Xi, W., & Gong, W. (2023). CRC-based reliable wifi backscatter communiation for supply chain management. Applied sciences, 13(9). https://doi.org/10.3390/app13095471

  3. [3] Ekanem, I. I., Ohwoekevwo, J. U., & Ikpe, A. E. (2024). Conjectures of computer vision technology (CVT) on industrial information management systems (IMSs): A futuristic Gaze. Metaheuristic algorithms with applications, 1(1), 20–34. https://maa.reapress.com/journal/article/view/20

  4. [4] Robinson, A. C., & Quinn, S. D. (2018). A brute force method for spatially-enhanced multivariate facet analysis. Computers, environment and urban systems, 69, 28–38. https://doi.org/10.1016/j.compenvurbsys.2017.12.003

  5. [5] Abu Khurma, R., Aljarah, I., Sharieh, A., Abd Elaziz, M., Damaševičius, R., & Krilavičius, T. (2022). A review of the modification strategies of the nature inspired algorithms for feature selection problem. Mathematics, 10(3). https://doi.org/10.3390/math10030464

  6. [6] Liang, L., & Atkins, D. (2013). Designing service level agreements for inventory management. Production and operations management, 22(5), 1103–1117. https://doi.org/10.1111/poms.12033

  7. [7] Duan, Q., & Warren Liao, T. (2013). Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands. International journal of production economics, 142(1), 194–204. https://doi.org/10.1016/j.ijpe.2012.11.004

  8. [8] Maitra, S. (2024). A system-dynamic based simulation and Bayesian optimization for inventory management. ArXiv Preprint ArXiv:2402.10975.

  9. [9] Ikpe, A., & Ekanem, I. (2024). Adoption of machine learning in streamlining maintenance strategies for effective operations in automotive industries. Big data and computing visions, 4, 180–200. http://dx.doi.org/10.22105/bdcv.2024.476761.1187

  10. [10] Boute, R. N., & Udenio, M. (2023). AI in logistics and supply chain management. In global logistics and supply chain strategies for the 2020s: vital skills for the next generation (pp. 49–65). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95764-3_3

  11. [11] Ikpe, A. E., Ekanem, I. I., & Ohwoekevwo, J. U. (2024). Integration of internet of things in conventional vehicle technology and its synergy with vehicle telematics systems and fleet management sequence. Smart internet of things, 1(1), 31–53. https://www.siot.reapress.com/journal/article/view/27

  12. [12] A study on IoT-enabled smart vehicles for road navigation and ride comfortability in contemporary vehicle applications. (2025). Soft computing fusion with applications, 1(2), 58–75. https://doi.org/10.22105/r5resa48

  13. [13] Ahmed, D., Hassan, M., & Mstafa, R. (2022). A review on deep sequential models for forecasting time series data. Applied computational intelligence and soft computing, 2022. http://dx.doi.org/10.1155/2022/6596397

  14. [14] Sarker, I. H. (2021). Machine learning: Algorithms, Real-World Applications and Research Directions. SN computer science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x

  15. [15] Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in operations research and management science, 21(2), 101–116. https://doi.org/10.1016/j.sorms.2016.10.002

  16. [16] Taimoor, S., Ferdouse, L., & Ejaz, W. (2022). Holistic resource management in UAV-assisted wireless networks: An optimization perspective. Journal of network and computer applications, 205, 103439. https://doi.org/10.1016/j.jnca.2022.103439

  17. [17] Cesur, E., Cesur, M. R., & Abraham, A. (2024). Enhanced branch and bound algorithm: minimizing subproblem complexity in power dispatch. IEEE access, 12, 93753–93760. https://doi.org/10.1109/ACCESS.2024.3422261

  18. [18] Shokry, S., Tanaka, S., Nakamura, F., Ariyoshi, R., & Miura, S. (2018). Bandwidth maximization approach for displaced left-turn crossovers coordination under heterogeneous traffic conditions. Journal of traffic and transportation engineering, 6, 183–196. http://dx.doi.org/10.17265/2328-2142/2018.04.004

  19. [19] Vadiyala, V. R., & Baddam, P. R. (2018). Exploring the symbiosis: Dynamic programming and its relationship with data structures. Asian journal of applied science and engineering, 7(1), 101–112. https://pdfs.semanticscholar.org/df8d/966e3043f17e6c9aa301f232964035d898af.pdf

  20. [20] Park, S., Lee, W., Choe, B., & Lee, S.-G. (2019). A survey on personalized pagerank computation algorithms. IEEE access, 7, 163049–163062. https://doi.org/10.1109/ACCESS.2019.2952653

  21. [21] Hjeij, M., & Vilks, A. (2023). A brief history of heuristics: how did research on heuristics evolve? Humanities and social sciences communications, 10(1), 64. https://doi.org/10.1057/s41599-023-01542-z

  22. [22] Oliker, N., & Bekhor, S. (2020). An infeasible start heuristic for the transit route network design problem. Transportmetrica a: transport science, 16, 1–32. http://dx.doi.org/10.1080/23249935.2020.1719551

  23. [23] Navarro, C. A., Hitschfeld-Kahler, N., & Mateu, L. (2014). A survey on parallel computing and its applications in data-parallel problems using GPU architectures. Communications in computational physics, 15(2), 285–329. https://www.cambridge.org/core/journals/communications-in-computational-physics/article/survey-on-parallel-computing-and-its-applications-in-dataparallel-problems-using-gpu-architectures/879D964A36478175DEED99FB00C8D811

  24. [24] Guo, C., Li, L., Hu, Y., & Yan, J. (2020). A deep learning based fault diagnosis method with hyperparameter optimization by using parallel computing. IEEE access, 8, 131248–131256. https://doi.org/10.1109/ACCESS.2020.3009644

  25. [25] Zamri, N. E., Azhar, S. A., Sidik, S. S. M., Mansor, M. A., Kasihmuddin, M. S. M., Pakruddin, S. P. A., … & Nawi, S. N. M. (2022). Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability. Neural computing and applications, 34(21), 19283–19311. https://doi.org/10.1007/s00521-022-07541-6

  26. [26] Radhakrishnan, P., Prasad, V. M., & Gopalan, M. R. (2009). Inventory optimization in supply chain management using genetic algorithm. International journal of computer science and network security, 9(1), 33–40. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b6e062420c537f8c843f6b4220bd0955fb02b787

  27. [27] Mahjoob, M., Fazeli, S. S., Milanlouei, S., Tavassoli, L. S., & Mirmozaffari, M. (2022). A modified adaptive genetic algorithm for multi-product multi-period inventory routing problem. Sustainable operations and computers, 3, 1–9. https://doi.org/10.1016/j.susoc.2021.08.002

  28. [28] Goltsos, T. E., Syntetos, A. A., Glock, C. H., & Ioannou, G. (2022). Inventory – forecasting: Mind the gap. European journal of operational research, 299(2), 397–419. https://doi.org/10.1016/j.ejor.2021.07.040

  29. [29] Kaynov, I., van Knippenberg, M., Menkovski, V., van Breemen, A., & van Jaarsveld, W. (2024). Deep reinforcement learning for one-warehouse multi-retailer inventory management. International journal of production economics, 267, 109088. https://doi.org/10.1016/j.ijpe.2023.109088

  30. [30] Gonçalves, J. N. C., Sameiro Carvalho, M., & Cortez, P. (2020). Operations research models and methods for safety stock determination: A review. Operations research perspectives, 7, 100164. https://doi.org/10.1016/j.orp.2020.100164

  31. [31] Hasani, A., Eskandarpour, M., & Fattahi, M. (2018). A simulation-based optimisation approach for multi-objective inventory control of perishable products in closed-loop supply chains under uncertainty. International journal of advanced operations management, 10(4), 324–344. https://doi.org/10.1504/IJAOM.2018.097268

  32. [32] Teerasoponpong, S., & Sopadang, A. (2022). Decision support system for adaptive sourcing and inventory management in small- and medium-sized enterprises. Robotics and computer-integrated manufacturing, 73, 102226. https://doi.org/10.1016/j.rcim.2021.102226

  33. [33] Yahia, H. S., Zeebaree, S. R., Sadeeq, M. A., Salim, N. O., Kak, S. F., Adel, A. Z., … & Hussein, H. A. (2021). Comprehensive survey for cloud computing based nature-inspired algorithms optimization scheduling. Asian journal of research in computer science, 8(2), 1–16. https://doi.org/10.9734/AJRCOS/2021/v8i230195

  34. [34] Xia, Y., Yang, M.-H., Golany, B., Gilbert, S. M., & Yu, G. (2004). Real-time disruption management in a two-stage production and inventory system. IIE transactions, 36(2), 111–125. https://www.tandfonline.com/doi/abs/10.1080/07408170490245379

  35. [35] Zhang, H., Shi, C., & Chao, X. (2016). Technical note—approximation algorithms for perishable inventory systems with setup costs. Operations research, 64(2), 432–440. https://doi.org/10.1287/opre.2016.1485

  36. [36] Žic, J., & Žic, S. (2020). Multi-criteria decision making in supply chain management based on inventory levels, environmental impact and costs. Advances in production engineering & management, 15(2), 151–163. https://doi.org/10.14743/apem2020.2.355

  37. [37] Lee, W. Q., Chua, T. J., Katru, R. K., & Cai, T. X. (2022). Implementing distribution requirement planning and scheduling system for lens manufacturing company. 2022 IEEE international conference on industrial engineering and engineering management (IEEM) (pp. 701–705). IEEE. https://doi.org/10.1016/S0927-0507(03)11012-2

  38. [38] de Kok, T. G., & Fransoo, J. C. (2003). Planning supply chain operations: definition and comparison of planning concepts. In Supply chain management: Design, coordination and operation (Vol. 11, pp. 597–675). Elsevier. https://doi.org/10.1016/S0927-0507(03)11012-2

  39. [39] Si, B., Tian, Z., Jin, X., Zhou, X., & Shi, X. (2019). Ineffectiveness of optimization algorithms in building energy optimization and possible causes. Renewable energy, 134, 1295–1306. https://doi.org/10.1016/j.renene.2018.09.057

  40. [40] Houssein, E. H., Saeed, M. K., Hu, G., & Al-Sayed, M. M. (2024). Metaheuristics for solving global and engineering optimization problems: review, applications, open issues and challenges. Archives of computational methods in engineering, 31(8), 4485–4519. https://doi.org/10.1007/s11831-024-10168-6

  41. [41] Muñoz, M. A., Sun, Y., Kirley, M., & Halgamuge, S. K. (2015). Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. Information sciences, 317, 224–245. https://doi.org/10.1016/j.ins.2015.05.010

  42. [42] Azzi, A., Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2014). Inventory holding costs measurement: a multi-case study. The international journal of logistics management, 25(1), 109–132. https://doi.org/10.1108/IJLM-01-2012-0004

  43. [43] Silva, P. M., Gonçalves, J. N. C., Martins, T. M., Marques, L. C., Oliveira, M., Reis, M. I., … & Fernandes, J. M. (2022). A hybrid bi-objective optimization approach for joint determination of safety stock and safety time buffers in multi-item single-stage industrial supply chains. Computers & industrial engineering, 168, 108095. https://doi.org/10.1108/IJLM-01-2012-0004

  44. [44] Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability engineering & system safety, 91(9), 992–1007. https://doi.org/10.1016/j.ress.2005.11.018

  45. [45] Aro-Gordon, S., & Gupte, J. (2016). Review of modern inventory management techniques. Global journal of business & management, 1(2), 1–22. https://www.researchgate.net/profile/Stephen-Aro-Gordon/publication/307966411_Review_of_modern_inventory_management_techniques/links/57d41a6608ae6399a3921fbb/Review-of-modern-inventory-management-techniques.pdf

  46. [46] Aro-Gordon, S., & Gupte, J. (2016). Contemporary inventory management techniques: A conceptual investigation [presentation]. Proceedings of the international conference on operations management and research (pp. 21–22). https://www.academia.edu/download/59015138/con_ROL_Inventory_ICOMAR1620190424-80486-19bm05t.pdf

  47. [47] Li, S., & Amenta, N. (2015). Brute-force k-nearest neighbors search on the gpu. In similarity search and applications (pp. 259–270). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25087-8_25

  48. [48] Begum, N., Ulanova, L., Wang, J., & Keogh, E. (2015). Accelerating dynamic time warping clustering with a novel admissible pruning strategy [presentation]. Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining (pp. 49–58). https://dl.acm.org/doi/abs/10.1145/2783258.2783286

  49. [49] Ali, I., Modibbo, U. M., Bolaji, A. L., & Garg, H. (2024). Optimization and computing using intelligent data-driven approaches for decision-making: Optimization applications. CRC Press. https://doi.org/10.1201/9781003503057

  50. [50] Phillipson, F. (2024). Quantum computing in logistics and supply chain management-an overview. ArXiv Preprint ArXiv:2402.17520.

  51. [51] Mohan, M., Ayyalasomayajula, T., & Ayyalasomayajula, S. (2021). Proactive scaling strategies for cost-efficient hyperparameter optimization in cloud-based machine learning models: A comprehensive review. ESP Journal of engineering & technology advancements,1(2), 42-56. https://www.espjeta.org/jeta-v1i2p108

  52. [52] Mahoor, M., Salmasi, F. R., & Najafabadi, T. A. (2017). A hierarchical smart street lighting system with brute-force energy optimization. IEEE sensors journal, 17(9), 2871–2879. https://doi.org/10.1109/JSEN.2017.2684240

  53. [53] Lustick, I. S., & Tetlock, P. E. (2021). The simulation manifesto: The limits of brute-force empiricism in geopolitical forecasting. Futures & foresight science, 3(2), e64. https://doi.org/10.1002/ffo2.64

  54. [54] Ntakolia, C., Kokkotis, C., Karlsson, P., & Moustakidis, S. (2021). An explainable machine learning model for material backorder prediction in inventory management. Sensors, 21(23). https://doi.org/10.3390/s21237926

  55. [55] Alsharef, A., Aggarwal, K., Sonia, Kumar, M., & Mishra, A. (2022). Review of ML and AutoML solutions to forecast time-series data. Archives of computational methods in engineering, 29(7), 5297–5311. https://doi.org/10.1007/s11831-022-09765-0

  56. [56] Brusset, X., La Torre, D., & Broekaert, J. (2022). Chapter 6 - algorithms, analytics, and artificial intelligence: harnessing data to make supply chain decisions. In the digital supply chain (pp. 93–110). Elsevier. https://doi.org/10.1016/B978-0-323-91614-1.00006-X

  57. [57] Sousa, M. S., Loureiro, A. L. D., & Miguéis, V. L. (2025). Predicting demand for new products in fashion retailing using censored data. Expert systems with applications, 259, 125313. https://doi.org/10.1016/j.eswa.2024.125313

  58. [58] Jahin, M. A., Shovon, M. S. H., Shin, J., Ridoy, I. A., & Mridha, M. F. (2024). Big data—supply chain management framework for forecasting: data preprocessing and machine learning techniques. Archives of computational methods in engineering, 31(6), 3619–3645. https://doi.org/10.1007/s11831-024-10092-9

  59. [59] Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., … & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-science reviews, 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225

  60. [60] Sen, P. C., Hajra, M., & Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. Emerging technology in modelling and graphics (pp. 99–111). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-7403-6_11

  61. [61] Bekker, J., & Aldrich, C. (2011). The cross-entropy method in multi-objective optimisation: An assessment. European journal of operational research, 211(1), 112–121. https://doi.org/10.1016/j.ejor.2010.10.028

  62. [62] Ilham, M. N., Arbansyah, A., Suryawan, S. H., & Wirayuda, P. (2020). Application of bubble sort optimization in new student admission selection using brute force algorithm. Tepian, 5(2), 568771. https://media.neliti.com/media/publications/568771-application-of-bubble-sort-optimization-1d72b36e.pdf

  63. [63] Fu, M. C., Glover, F. W., & April, J. (2005). Simulation optimization: A review, new developments, and applications. Proceedings of the winter simulation conference, 2005. (p. 13). IEEE. https://ieeexplore.ieee.org/abstract/document/1574242/

  64. [64] Bécue, A., Praça, I., & Gama, J. (2021). Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities. Artificial intelligence review, 54(5), 3849–3886. https://doi.org/10.1007/s10462-020-09942-2

  65. [65] Jo, H. J., & Yoon, J. W. (2015). A new countermeasure against brute-force attacks that use high performance computers for big data analysis. International journal of distributed sensor networks, 11(6), 406915. https://doi.org/10.1155/2015/406915

  66. [66] Anand, R., Jain, V., Singh, A., Rahal, D., Rastogi, P., Rajkumar, A., & Gupta, A. (2023). Clustering of big data in cloud environments for smart applications. In Integration of iot with cloud computing for smart applications (pp. 227–247). Chapman and Hall/CRC. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003319238-14/clustering-big-data-cloud-environments-smart-applications-rohit-anand-vipin-jain-anushi-singh-disha-rahal-prachi-rastogi-avinash-rajkumar-ankur-gupta

  67. [67] Nikolic, N., Zarkic-Joksimovic, N., Stojanovski, D., & Joksimovic, I. (2013). The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert systems with applications, 40(15), 5932–5944. https://doi.org/10.1016/j.eswa.2013.05.022

  68. [68] Breur, T. (2011). Data analysis across various media: Data fusion, direct marketing, clickstream data and social media. Journal of direct, data and digital marketing practice, 13(2), 95–105. https://doi.org/10.1057/dddmp.2011.32

  69. [69] Ross, D. F., & Ross, D. F. (1996). Replenishment inventory planning. In Distribution: planning and control (pp. 263–319). Springer. https://doi.org/10.1007/978-1-4684-0015-1

  70. [70] Schütz, M., Kerbl, B., & Wimmer, M. (2021). Rendering point clouds with compute shaders and vertex order optimization. Computer graphics forum (Vol. 40, pp. 115–126). Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14345

  71. [71] Siraj, M., Naseem, A., Maryam, M., & Asad, J. (2024). Optimizing inventory management: A comprehensive analysis of economic order quantity, lot size, safety stock, and reordering quantity strategies. Journal of business administration and management sciences (JOBAMS), 6(1), 8–16. http://jobams.smiu.edu.pk/index.php/jobams/article/view/123

  72. [72] Gallego-García, D., Gallego-García, S., & García-García, M. (2021). An optimized system to reduce procurement risks and stock-outs: A simulation case study for a component manufacturer. Applied sciences, 11(21). https://doi.org/10.3390/app112110374

  73. [73] Feng, J. (2022). Optimal control strategy model of marketing management based on consumer psychology. Mathematical problems in engineering, 2022(1), 8689244. https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/8689244

  74. [74] Didwania, R., Verma, R., & Dhanda, N. (2024). Future ahead for supply chain management. In Supply chain management (pp. 283–310). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003509561-15/future-ahead-supply-chain-management-rishabh-didwania-rajat-verma-namrata-dhanda

  75. [75] Kordos, M., Boryczko, J., Blachnik, M., & Golak, S. (2020). Optimization of warehouse operations with genetic algorithms. Applied sciences, 10(14), 4817. https://www.mdpi.com/2076-3417/10/14/4817

  76. [76] Zhou, L., Liu, H., Zhao, J., Wang, F., & Yang, J. (2022). Performance analysis of picking routing strategies in the leaf layout warehouse. Mathematics, 10(17), 3149. https://www.mdpi.com/2227-7390/10/17/3149

  77. [77] Hannan, M. A., Faisal, M., Jern Ker, P., Begum, R. A., Dong, Z. Y., & Zhang, C. (2020). Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renewable and sustainable energy reviews, 131, 110022. https://doi.org/10.1016/j.rser.2020.110022

  78. [78] Bahadori, M. S., Gonçalves, A. B., & Moura, F. (2021). A systematic review of station location techniques for bicycle-sharing systems planning and operation. ISPRS international journal of geo-information, 10(8). https://doi.org/10.3390/ijgi10080554

  79. [79] Islam, S., & Uddin, K. (2023). Correlated storage assignment approach in warehouses: A systematic literature review. Journal of industrial engineering and management, 16(2), 294–318. https://upcommons.upc.edu/handle/2117/395175

  80. [80] Peres, F., & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: review, challenges, design, and development. Applied sciences, 11(14). https://doi.org/10.3390/app11146449

Published

2024-12-19

How to Cite

Application of brute force algorithm optimization as an industrial hotspot in inventory management and control. (2024). Uncertainty Discourse and Applications, 1(2), 219-236. https://doi.org/10.48313/uda.v1i2.43