On the shoulders of the three giants information theory, semi-group theory, and uncertain reasoning with information-theoretic applications to human computer interaction

Authors

  • Ismail A Mageed * School of Computer Science, AI, and Electronics, Faculty of engineering and Digital Technologies, University of Bradford, United Kingdom

https://doi.org/10.48313/uda.v1i2.46

Abstract

This paper provides a first-time ever unification of information theory, semi-group theory with the theory of uncertain reasoning, through functional perspective. Fundamentally, the threshold theorems for the Inference Functional (IF) were devised. Furthermore, numerical experiments are illustrated. Some information-theoretic applications to Human Computer Interaction (HCI) are provided. The paper ends with concluding remarks, open problems, and future research pathways.

Keywords:

Rényi generalized entropies, Information theory, Semi-group theory, Uncertain reasoning

References

  1. [1] Mohamed, I. A. M., & Kouvatsos, D. D. (2011). Extended properties of the class of rényi generalized entropies in the discrete time domain. International conference on computer networks and information technology (pp. 1–7). IEEE. https://doi.org/10.1109/ICCNIT.2011.6020894

  2. [2] LU, Z. (2016). Functional equations. https://www.math.uci.edu/~mathcircle/materials/M6L2.pdf

  3. [3] Cain, A. J. (2016). Nine chapters on the semigroup art. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a8e95f05185b964829ae7e8f1617ecf560f3cf2

  4. [4] Mageed, I. A., & Zhang, Q. (2023). Threshold theorems for the tsallisian and rényian (TR) cumulative distribution functions (CDFs) of the heavy-tailed stable M/G/1 queue with tsallisian and rényian entropic applications to satellite images (SIs). Electronic journal of computer science and information technology, 9(1), 41–47. https://doi.org/10.52650/ejcsit.v9i1.161

  5. [5] Liu, W., Oulasvirta, A., Rioul, O., Beaudouin-Lafon, M., & Guiard, Y. (2019). Information theory: An analysis and design tool for HCI [presentation]. CHI 2019 - the acm CHI conference on human factors in computing systems - workshop on computational modeling in human-computer interaction. https://hal.telecom-paris.fr/hal-02300784

  6. [6] Parziale, A., Senatore, R., & Marcelli, A. (2020). Exploring speed-accuracy tradeoff in reaching movements: A neurocomputational model. Neural computing and applications, 32(17), 13377–13403. https://doi.org/10.1007/s00521-019-04690-z

  7. [7] Prasetiyowati, M. I., Maulidevi, N. U., & Surendro, K. (2021). Determining threshold value on information gain feature selection to increase speed and prediction accuracy of random forest. Journal of big data, 8(1), 84. https://doi.org/10.1186/s40537-021-00472-4

  8. [8] Barutchu, A., & Spence, C. (2021). Top–down task-specific determinants of multisensory motor reaction time enhancements and sensory switch costs. Experimental brain research, 239(3), 1021–1034. https://doi.org/10.1007/s00221-020-06014-3

  9. [9] Blandino, M., Berdahl, E., & Soukoreff, R. W. (2020). An estimation and comparison of human abilities to communicate information through pursuit tracking vs. pointing on a single axis. Advances in intelligent systems and computing (Vol. 956, pp. 247–257). Springer. https://doi.org/10.1007/978-3-030-20037-4_22

  10. [10] Liu, W., Gori, J., Rioul, O., Beaudouin-Lafon, M., & Guiard, Y. (2020). How relevant is hick’s law for HCI? [presentation]. Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–11). https://doi.org/10.1145/3313831.3376878

  11. [11] Zhang, M. R., Zhai, S., & Wobbrock, J. O. (2019). Text entry throughput: towards unifying speed and accuracy in a single performance metric [presentation]. Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–13). https://doi.org/10.1145/3290605.3300866

  12. [12] Zhang, C., Li, S., Song, Y., Lu, L., & Hou, M. (2021). TouchSense: accurate and transparent user re-authentication via finger touching. Edge computing and IOT: systems, management and security: first EAI international conference, ICECI 2020, Virtual event, November 6, 2020, proceedings 1 (pp. 105–125). Springer International Publishing. https://doi.org/10.1007/978-3-030-73429-9_7

  13. [13] Chen, T., & Details, P. author. (2022). Decision dynamics and human-computer interaction in online health information seeking: a behavioral information research exploration. The Florida State University. https://www.proquest.com/openview/775ef002b070ba70a050c7e0a04081b5/1?pq-origsite=gscholar&cbl=18750&diss=y

  14. [14] Blandino, M. V. (2021). Musical gesture through the human computer interface: an investigation using information theory. Louisiana State University and Agricultural & Mechanical College. https://doi.org/10.31390/gradschool_dissertations.5535

  15. [15] Chong, L. (2023). Temperature, entropy, and usability: the theoretical and practical resemblances between thermodynamics and user interface design. International conference on human-computer interaction (pp. 16–24). Springer. https://doi.org/10.1007/978-3-031-35989-7_2

  16. [16] Chen, M., Gaither, K., John, N. W., & Mccann, B. (2019). An information-theoretic approach to the cost-benefit analysis of visualization in virtual environments. IEEE transactions on visualization and computer graphics, 25(1), 32–42. https://doi.org/10.1109/TVCG.2018.2865025

  17. [17] Bock, A., Axelsson, E., Emmart, C., Kuznetsova, M., Hansen, C., & Ynnerman, A. (2018). Openspace: changing the narrative of public dissemination in astronomical visualization from what to how. IEEE computer graphics and applications, 38(3), 44–57. https://doi.org/10.1109/MCG.2018.032421653

  18. [18] Villard, P. F., Vidal, F. P., ap Cenydd, L., Holbrey, R., Pisharody, S., Johnson, S., … & Gould, D. (2014). Interventional radiology virtual simulator for liver biopsy. International journal of computer assisted radiology and surgery, 9(2), 255–267. https://doi.org/10.1007/s11548-013-0929-0

  19. [19] Ip, C. Y., & Varshney, A. (2011). Saliency assisted navigation of very large landscape images. IEEE transactions on visualization and computer graphics, 17(12), 1737–1746. https://doi.org/10.1109/TVCG.2011.231

  20. [20] Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., John, N. W., Perrot, V., … & Morgan, K. (2014). Efficacy of a virtual environment for training ball passing skills in rugby. Transactions on computational science XXIII: special issue on cyberworlds (pp. 98–117). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43790-2_6

  21. [21] Chen, M., & Golan, A. (2015). What may visualization processes optimize? IEEE transactions on visualization and computer graphics, 22(12), 2619–2632. https://ieeexplore.ieee.org/abstract/document/7368928/

  22. [22] A Mageed, I. (2023). The entropian threshold theorems for the steady state probabilities of the stable M/G/1 queue with heavy tails with applications of probability density functions to 6G networks. Electronic journal of computer science and information technology, 9(1), 24–30. https://doi.org/10.52650/ejcsit.v9i1.138

  23. [23] A Mageed, I., & FRSS, I. (2023). Where the mighty trio meet: information theory (IT), pathway model theory (PMT) and queueing theory (QT) [presentation]. 39th Annual UK Performance Engineering Workshop (p. 8). https://www.researchgate.net/profile/Nigel-Thomas-8/publication/376305981_UKPEW_2023/links/6571edc2cbd2c535ea04874e/UKPEW-2023.pdf#page=10 https://l1nq.com/YnGd3

  24. [24] Mageed, I. A., & Bhat, A. H. (2022). Generalized z-entropy (Gze) and fractal dimensions. Applied mathematics & information sciences, 16(5), 829–834. https://doi.org/10.18576/amis/160517

  25. [25] Mageed, I. A., & Zhang, Q. (2023). The rényian-tsallisian formalisms of the stable M/G/1 queue with heavy tails entropian threshold theorems for the squared coefficient of variation. Electronic journal of computer science and information technology, 9(1), 7–14. https://doi.org/10.52650/ejcsit.v9i1.135

  26. [26] Mageed, I. A., & Zhang, Q. (2023). Formalism of the rényian maximum entropy (RMF) of the stable M/G/1 queue with geometric mean (GeoM) and shifted geometric mean (SGeoM) constraints with potential geom applications to wireless sensor networks (WSNs). Electronic journal of computer science and information technology, 9(1), 31–40. https://doi.org/10.52650/ejcsit.v9i1.143

  27. [27] Bhat, A. H., Siddiqui, N. A., Mageed, I. A., Alkhazaleh, S., Das, V. R., & Baig, M. A. K. (2023). Generalization of renyi’s entropy and its application in source coding. Applied mathematics & information sciences, 17(5), 941–948. https://doi.org/10.18576/amis/170521

  28. [28] Mageed, I. A., Zhang, Q., & Modu, B. (2023). The linearity theorem of rényian and tsallisian maximum entropy solutions of the heavy-tailed stable M/G/1 queueing system entailed with potential queueing-theoretic applications to cloud computing and IoT. Electronic journal of computer science and information technology, 9(1), 15–23. https://doi.org/10.52650/ejcsit.v9i1.136

  29. [29] Mageed, I. A. (2023). Rényi’s maximum entropy formalism of heavy-tailed queues with hurst exponent heuristic mean queue length combined with potential applications of hurst exponent to engineering [presentation]. 39th Annual UK Performance Engineering Workshop (p. 21). https://www.researchgate.net/profile/Nigel-Thomas-8/publication/376305981_UKPEW_2023/links/6571edc2cbd2c535ea04874e/UKPEW-2023.pdf#page=23

Published

2025-12-26

How to Cite

On the shoulders of the three giants information theory, semi-group theory, and uncertain reasoning with information-theoretic applications to human computer interaction. (2025). Uncertainty Discourse and Applications, 1(2), 258-270. https://doi.org/10.48313/uda.v1i2.46

Similar Articles

1-10 of 14

You may also start an advanced similarity search for this article.