Advancements in Critical Path Method Using Neutrosophic Theory: A Review

Authors

  • M Navya Pratyusha VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati AP, India‎.
  • Ranjan Kumar VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati AP, India‎.

Keywords:

Operational research‎, Critical path problem, Time cost tradeoff, Uncertainty, Extended fuzzy principles, Time-cost tradeoff

Abstract

By integrating neutrosophic principles, recent optimization advances give a thorough analysis of decision-making processes. The focus of the research is on project management, and more especially on the difficulties of using the Critical Path Method and the Time Cost Tradeoff in contexts where there is a high degree of uncertainty. To deal with data in various uncertain contexts was further detailed in the investigation to resolve such issues. According to recent research, using neutrosophic in project scheduling can significantly improve efficiency, effectiveness, and accuracy, especially in uncertain environments. The project might finish in the least amount of time possible if all the relevant factors, including time, money, and quality, are considered. The critical path method can significantly improve by incorporating neutrosophic ideas into project management. This study surveys the state of the art and delves into possible directions for future work with other uncertain environments.

References

‎[1] He, Z., & Jiang, W. (2018). A new belief Markov chain model and its application in inventory prediction. ‎International journal of production research, 56(8), 2800–2817.‎

‎[2] Kama, H. N., & Mankilik, I. M. (2015). Application Of Queuing Theory In Cadet Mess Administration: A ‎Case Study Of Nigerian Defence Academy, Kaduna Nigeria. Academy journal of science and engineering, ‎‎9(1), 89–100.‎

‎[3] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.‎

‎[4] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Soft subring theory under ‎interval-valued neutrosophic environment (Vol. 36). Infinite Study.‎

‎[5] Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Introduction to interval-valued neutrosophic subring ‎‎(Vol. 36). Infinite Study.‎

‎[6] Dey, A., Kumar, R., Broumi, S., & Bhowmik, P. (2022). Different types of operations on neutrosophic ‎graphs. International journal of neutrosophic science, 19(2), 87–94.‎

‎[7] Sikder, J., Mahmud, T., Banik, B., & Gupta, S. (2018). Linear Programming To Find The Critical Path ‎Using Spreadsheet Methodology. IOSR journal of computer engineering, 20(3), 48–50. DOI:10.9790/0661-‎‎2003024850‎

‎[8] Kumar, R., Edalatpanah, S. A., & Mohapatra, H. (2020). Note on “Optimal path selection approach for ‎fuzzy reliable shortest path problem.” Journal of intelligent & fuzzy systems, 39(5), 7653–7656. ‎DOI:10.3233/JIFS-200923‎

‎[9] Das, S. K., Edalatpanah, S. A., & Dash, J. K. (2020). An intelligent dual simplex method to solve triangular ‎neutrosophic linear fractional programming problem (Vol. 36). Infinite Study.‎

‎[10] Veeramani, C., Edalatpanah, S. A., & Sharanya, S. (2021). Solving the multiobjective fractional ‎transportation problem through the neutrosophic goal programming approach. Discrete dynamics in ‎nature and society, 2021(1), 7308042.‎

‎[11] Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2021). Modified Vogel’s approximation method ‎for transportation problem under uncertain environment. Complex & intelligent systems, 7(1), 29–40.‎

‎[12] Edalatpanah, S. A. (2023). A paradigm shift in linear programming: an algorithm without artificial ‎variables. Systemic analytics, 1(1), 1–10.‎

‎[13] Alburaikan, A., Edalatpanah, S. A., Alharbi, R., Khalifa, H. A. E.-W., & others. (2023). Towards ‎neutrosophic Circumstances goal programming approach for solving multi-objective linear fractional ‎programming problems. Full length article, 23(1), 350.‎

‎[14] Bahrampour, P., Najafi, S. E., Hosseinzadeh lotfi, F., & Edalatpanah, A. (2023). Designing a Scenario-‎Based Fuzzy Model for Sustainable Closed-Loop Supply Chain Network considering Statistical ‎Reliability: A New Hybrid Metaheuristic Algorithm. Complexity, 2023(1), 1337928.‎

‎[15] Bazargan, A., Najafi, S. E., Lotfi, F. H., Fallah, M., & Edalatpanah, S. A. (2023). Presenting a productivity ‎analysis model for Iran oil industries using Malmquist network analysis. Decision making: applications in ‎management and engineering, 6(2), 251–292.‎

‎[16] Akram, M., Shah, S. M. U., Ali Al-Shamiri, M. M., & Edalatpanah, S. A. (2023). Extended DEA method for ‎solving multi-objective transportation problem with Fermatean fuzzy sets. AIMS mathematics, 8(1), ‎‎924–961. DOI:10.3934/math.2023045‎

‎[17] Dey, A., Kumar, R., & Broumi, S. (2022). The Neutrosophic Traveling Salesman problem with ‎Neutrosophic Edge Weight: Formulation and A Genetic Algorithm. International journal of neutrosophic ‎science (ijns), 19(3), 40–46.‎

‎[18] Gayen, S., Edalatpanah, S. A., Jha, S., & Kumar, R. (2023). On the Characterization of Antineutrosophic ‎Subgroup. Advances in mathematical physics, 2023(1), 4430103.‎

‎[19] Dubey, A., & Kumar, R. (2024). Recent Trends and Advancements in Inventory Management. EAI ‎endorsed transactions on scalable information systems, 11(2).‎

‎[20] Dubey, A., & Kumar, R. (2023). Extended uncertainty principle for inventory control: an updated ‎review of environments and applications. International journal of neutrosophic science, 21, 8–20.‎

‎[21] Dubey, A., & Kumar, R. (2024). "Inventory model with sensitivity analysis under uncertain ‎environment. Journal of information and optimization sciences, 45, 1081–1092.‎

‎[22] Tripathi, S. K., & Kumar, R. (2023). A Review of Neutrosophic Linear Programming Problems Under ‎Uncertain Environments. Full length article, 21(4), 94.‎

‎[23] Tripathi, S. K., & Kumar, R. (2023). A Short Literature on Linear Programming Problem. EAI endorsed ‎transactions on energy web, 10(1).‎

‎[24] Tripathi, S. K., & Kumar, K. (2024). Solving neutrosophic minimal cost flow problem using multi-‎objective linear programming problem. Journal of information and optimization sciences, 45, 1093–1104.‎

‎[25] Pratyusha, M. N., & Kumar, R. (2023). Critical path method and project evaluation and review ‎technique under uncertainty:a state-of-art review. International journal of neutrosophic science, 21, 143–‎‎153.‎

‎[26] Dey, A., Broumi, S., Kumar, A. R., & others. (2024). Critical Path Method & Project Evaluation and ‎Review Technique: A Neutrosophic Review. Neutrosophic sets and systems, 67, 135–146.‎

‎[27] Pratyusha, M. N., & Kumar, R. (2024). Solving neutrosophic critical path problem using python. Journal ‎of information and optimization sciences, 45, 897–911.‎

‎[28] Abinaya, B., & Amirtharaj, E. C. H. (2024). An alternative method for finding the critical path of the ‎network in fuzzy time cost trade off problem. Indian journal of science and technology, 17, 949–954.‎

‎[29] Rekh, R. K., & Dhodiya, J. M. (2019). Solution of fuzzy multi criteria project management problem by ‎fuzzy programming technique with possibilistic approach. Indian j. sci. technol, 12, 1–21.‎

‎[30] Haghighi, M. H., Mousavi, S. M., Antuchevičien.e, J., & Mohagheghi, V. (2019). A new analytical ‎methodology to handle time-cost trade-off problem with considering quality loss cost under interval-‎valued fuzzy uncertainty. Technological and economic development of economy, 25(2), 277–299.‎

‎[31] Abdel-Basset, M., Ali, M., & Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using ‎neutrosophic set. Computers & industrial engineering, 141, 106286.‎

‎[32] Nasrolahi, F., & Shahsavari-Pour, N. (2023). Time-Cost and Safety Trade-off in Project Scheduling under ‎Uncertainty.‎

‎[33] Mahdavi-Roshan, P., Mousavi, S. M., & Mohagheghi, V. (2024). A new framework for project time--cost-‎‎-environmental trade-off problem with hybrid Fermatean fuzzy--grey information. Environment, ‎development and sustainability, 1–30.‎

‎[34] Abinaya, B., Jebaseeli, M. E., & Amirtharaj, E. C. H. (2019). An approach to solve fuzzy time cost trade ‎off problems. International journal of research in advent technology (ijrat) special issue, january 2019, 5–8.‎

Published

2024-08-28

How to Cite

Advancements in Critical Path Method Using Neutrosophic Theory: A Review. (2024). Uncertainty Discourse and Applications, 1(1), 73-78. https://uda.reapress.com/journal/article/view/28