Notes on various binomial transforms of generalized pell matrix sequence
Abstract
The main target of this study is to apply the binomial transform to the generalized Pell sequence. We define the binomial, s-binomial, rising, and falling transforms for generalized Pell matrix sequence. We establish some algebraic properties such as the recurrent formulas, Binet formu- las, generating functions, sum formulas etc... for generalized Pell matrix sequence.
Keywords:
Binet formula, Binomial transforms, Generating function, Matrix sequences, Pell numbersReferences
- [1] Gulec, H. H., & Taskara, N. (2012). On the (s, t) -Pell and (s, t) -Pell-Lucas sequences and their matrix representations. Applied mathematics letters, 25(10), 1554–1559. https://doi.org/10.1016/j.aml.2012.01.014
- [2] Uygun, S., & Açar, Z. S. (2023). Notes on (s, t)-Pell and (s, t)-Pell Lucas matrix sequences. Asian journal of mathematics and physics, 7.ARTICLE ID 1. https://mathphys.asia/files/07001.pdf
- [3] Horadam, A. F. (1971). Pell identities. Fibonacci quart, 9(3), 245–252. https://doi.org/10.1080/00150517.1971.12431004
- [4] Koshy, T. (2014). Pell and pell-lucas trees. Springer. https://doi.org/10.1007/978-1-4614-8489-9
- [5] Prodinger, H. (1993). Some information about the binomial transform. Fibonacci quarterly, 32(5), 412–415. https://doi.org/10.1080/00150517.1994.12429189
- [6] Chen, K. W. (2007). Identities from the binomial transform. Journal of number theory, 124(1), 142–150. https://doi.org/10.1016/j.jnt.2006.07.015
- [7] Falcon, S., & Plaza, A. (2009). Binomial transforms of the k-fibonacci sequence. International journal of nonlinear sciences and numerical simulation, 10(11–12), 1527–1538. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1527
- [8] Bhadouria, P., Jhala, D., & Singh, B. (2014). Binomial transforms of the k-lucas sequences and its properties. Journal of mathematics and computer science, 8(1), 81–92. https://doi.org/10.22436/jmcs.08.01.07
- [9] Yilmaz, N., & Taskara, N. (2013). Binomial transforms of the Padovan and Perrin matrix sequences. In Abstract and applied analysis (Vol. 2013, No. 1, p. 497418). Hindawi Publishing Corporation. https://doi.org/10.1155/2013/497418
- [10] Uygun, S., & Erdogdu, A. (2017). Binominal transforms of k-Jacobsthal sequences. Journal of mathematical and computational science, 7(6), 1100–1114. https://doi.org/10.28919/jmcs/3474
- [11] Kizilateş, C., Tuglu, N., & Cekim, B. (2017). Binomial transforms of Quadrapell sequences and Quadrapell matrix sequences. Journal of science and arts, 17(1), 69–80. https://B2n.ir/wx4290
- [12] Uygun, S. (2019). The binomial transforms of the generalized (s, t)-Jacobsthal matrix sequence. International journal of advances in applied mathematics and mechanics, 6(3), 14–20. https://doaj.org/article/8a7e52f9c5a240099cc328e5f7058238
- [13] Kaplan, F., & Özkoç Öztürk, A. (2022). On the binomial transforms of the Horadam quaternion sequences. Mathematical methods in the applied sciences, 45(18), 12009–12022. https://doi.org/10.1002/mma.7325
- [14] Kwon, Y. (2018). Binomial transforms of the modified k-Fibonacci-like sequence. https://arxiv.org/abs/1804.08119
- [15] Soykan, Y. (2020). Binomial transform of the generalized Tribonacci sequence. Asian research journal of mathematics, 16(10), 26–55. https://doi.org/10.9734/arjom/2020/v16i1030229
- [16] Soykan, Y. (2021). Binomial transform of the generalized third order Pell sequence. Communications in mathematics and applications, 12(1), 71–94. https://doi.org/10.26713/cma.v12i1.1371
- [17] Soykan, Y. (2021). Binomial transform of the generalized fourth order pell sequence. Archives of current research international, 21(6), 9–31. https://doi.org/10.9734/acri/2021/v21i630250
- [18] Soykan, Y. (2021). On binomial transform of the generalized fifth order pell sequence. Asian journal of advanced research and reports, 12(1), 8–29. https://doi.org/10.9734/ajarr/2021/v15i930423
- [19] Soykan, Y. (2021). Notes on binomial transform of the generalized narayana sequence. Earthline journal of mathematical sciences, 7(1), 77–111. https://doi.org/10.34198/ejms.7121.77111
- [20] Soykan, Y. (2021). Binomial transform of the generalized pentanacci sequence. Asian research journal of current science, 3(1), 209–231. https://www.jofscience.com/index.php/ARJOCS/article/view/74
- [21] Soykan, Y., Taşdemir, E., & Ozmen, N. (2023). On binomial transform of the generalized Jacobsthal-Padovan numbers. International journal of nonlinear analysis and applications, 14(1), 643–666. https://doi.org/10.22075/ijnaa.2021.24437.2743