Notes on various binomial transforms of generalized pell matrix sequence

Authors

  • Sukran Uygun * Department of Mathematics, Science and Art Faculty, Gaziantep University, Campus, 27310, Gaziantep, Turkey.
  • Ozan Haklıdır Department of Mathematics, Science and Art Faculty, Gaziantep University, Campus, 27310, Gaziantep, Turkey.

https://doi.org/10.48313/uda.v2i1.35

Abstract

The main target of this study is to apply the binomial transform to the generalized Pell sequence. We define the binomial, s-binomial, rising, and falling transforms for generalized Pell matrix sequence. We establish some algebraic properties such as the recurrent formulas, Binet formu- las, generating functions, sum formulas etc... for generalized Pell matrix sequence.

Keywords:

Binet formula, Binomial transforms, Generating function, Matrix sequences, Pell numbers

References

  1. [1] Gulec, H. H., & Taskara, N. (2012). On the (s, t) -Pell and (s, t) -Pell-Lucas sequences and their matrix representations. Applied mathematics letters, 25(10), 1554–1559. https://doi.org/10.1016/j.aml.2012.01.014

  2. [2] Uygun, S., & Açar, Z. S. (2023). Notes on (s, t)-Pell and (s, t)-Pell Lucas matrix sequences. Asian journal of mathematics and physics, 7.ARTICLE ID 1. https://mathphys.asia/files/07001.pdf

  3. [3] Horadam, A. F. (1971). Pell identities. Fibonacci quart, 9(3), 245–252. https://doi.org/10.1080/00150517.1971.12431004

  4. [4] Koshy, T. (2014). Pell and pell-lucas trees. Springer. https://doi.org/10.1007/978-1-4614-8489-9

  5. [5] Prodinger, H. (1993). Some information about the binomial transform. Fibonacci quarterly, 32(5), 412–415. https://doi.org/10.1080/00150517.1994.12429189

  6. [6] Chen, K. W. (2007). Identities from the binomial transform. Journal of number theory, 124(1), 142–150. https://doi.org/10.1016/j.jnt.2006.07.015

  7. [7] Falcon, S., & Plaza, A. (2009). Binomial transforms of the k-fibonacci sequence. International journal of nonlinear sciences and numerical simulation, 10(11–12), 1527–1538. https://doi.org/10.1515/IJNSNS.2009.10.11-12.1527

  8. [8] Bhadouria, P., Jhala, D., & Singh, B. (2014). Binomial transforms of the k-lucas sequences and its properties. Journal of mathematics and computer science, 8(1), 81–92. https://doi.org/10.22436/jmcs.08.01.07

  9. [9] Yilmaz, N., & Taskara, N. (2013). Binomial transforms of the Padovan and Perrin matrix sequences. In Abstract and applied analysis (Vol. 2013, No. 1, p. 497418). Hindawi Publishing Corporation. https://doi.org/10.1155/2013/497418

  10. [10] Uygun, S., & Erdogdu, A. (2017). Binominal transforms of k-Jacobsthal sequences. Journal of mathematical and computational science, 7(6), 1100–1114. https://doi.org/10.28919/jmcs/3474

  11. [11] Kizilateş, C., Tuglu, N., & Cekim, B. (2017). Binomial transforms of Quadrapell sequences and Quadrapell matrix sequences. Journal of science and arts, 17(1), 69–80. https://B2n.ir/wx4290

  12. [12] Uygun, S. (2019). The binomial transforms of the generalized (s, t)-Jacobsthal matrix sequence. International journal of advances in applied mathematics and mechanics, 6(3), 14–20. https://doaj.org/article/8a7e52f9c5a240099cc328e5f7058238

  13. [13] Kaplan, F., & Özkoç Öztürk, A. (2022). On the binomial transforms of the Horadam quaternion sequences. Mathematical methods in the applied sciences, 45(18), 12009–12022. https://doi.org/10.1002/mma.7325

  14. [14] Kwon, Y. (2018). Binomial transforms of the modified k-Fibonacci-like sequence. https://arxiv.org/abs/1804.08119

  15. [15] Soykan, Y. (2020). Binomial transform of the generalized Tribonacci sequence. Asian research journal of mathematics, 16(10), 26–55. https://doi.org/10.9734/arjom/2020/v16i1030229

  16. [16] Soykan, Y. (2021). Binomial transform of the generalized third order Pell sequence. Communications in mathematics and applications, 12(1), 71–94. https://doi.org/10.26713/cma.v12i1.1371

  17. [17] Soykan, Y. (2021). Binomial transform of the generalized fourth order pell sequence. Archives of current research international, 21(6), 9–31. https://doi.org/10.9734/acri/2021/v21i630250

  18. [18] Soykan, Y. (2021). On binomial transform of the generalized fifth order pell sequence. Asian journal of advanced research and reports, 12(1), 8–29. https://doi.org/10.9734/ajarr/2021/v15i930423

  19. [19] Soykan, Y. (2021). Notes on binomial transform of the generalized narayana sequence. Earthline journal of mathematical sciences, 7(1), 77–111. https://doi.org/10.34198/ejms.7121.77111

  20. [20] Soykan, Y. (2021). Binomial transform of the generalized pentanacci sequence. Asian research journal of current science, 3(1), 209–231. https://www.jofscience.com/index.php/ARJOCS/article/view/74

  21. [21] Soykan, Y., Taşdemir, E., & Ozmen, N. (2023). On binomial transform of the generalized Jacobsthal-Padovan numbers. International journal of nonlinear analysis and applications, 14(1), 643–666. https://doi.org/10.22075/ijnaa.2021.24437.2743

Published

2025-03-19

How to Cite

Uygun, S. ., & Haklıdır, O. . (2025). Notes on various binomial transforms of generalized pell matrix sequence. Uncertainty Discourse and Applications, 2(1), 32-44. https://doi.org/10.48313/uda.v2i1.35