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Abstract

Rough set theory provides a mathematical framework for approximating subsets using lower and upper bounds
defined by equivalence relations, effectively capturing uncertainty in classification and data analysis. Building on
these foundational ideas, further generalizations such as Hyperrough Sets and Superhyperrough Sets have been
developed. Probabilistic Rough Sets provide a framework for estimating uncertainty by utilizing membership
probabilities, allowing for the definition of lower and upper approximations based on specified threshold values.
Covering rough sets approximate information via overlapping covers, providing lower definite and upper possible
boundaries when true partitions are unavailable.
In this paper, we introduce newly defined concepts of the Probabilistic HyperRough Set and Covering HyperRough
Set, as well as the Probabilistic SuperHyperRough Set and Covering SuperHyperRough Set. These models extend
the existing frameworks of the Probabilistic Rough Set and Covering Rough Set, respectively.
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1|Preliminaries
This section provides an introduction to the foundational concepts and definitions required for the discussions in this paper.
Throughout this paper, all sets under consideration are assumed to be finite.

1.1|Rough Set, HyperRough Set, and Superhyperrough Set
A rough set approximates a subset using lower and upper bounds determined by equivalence classes, thereby capturing both
certainty and uncertainty in membership [1–3]. The following definitions formalize these concepts.

 

 

 

 

       Uncertainty Discourse and Applications

www.uda.reapress.com

          Uncert. Disc. Appl. Vol. 2, No. 2 (2025) 124–138.

Paper Type: Original Article

Citation: 

 

Received: 28 October 2024 

Revised: 01 January 2025 

Accepted: 14 March 2025

Fujita, T. (2025). Probabilistic hyperrough set and covering hyperrough

set. Uncertainty discourse and applications, 2(2), 124-138.

        Corresponding Author: 

        SA.2021.281500.1061      

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

        Corresponding Author: 

        

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).

t171d603@gunma-u.ac.jp

https://doi.org/10.48313/uda.v2i2.70

mailto:t171d603@gunma-u.ac.jp
http://www.uda.reapress.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


Definition 1 (Set). [4] A set is a well-defined collection of distinct elements or objects. If 𝑎 is an element of a set 𝐴, we
write 𝑎 ∈ 𝐴; otherwise, we write 𝑎 ∉ 𝐴.

Definition 2 (Subset). [4] Let 𝐴 and 𝐵 be sets. 𝐴 is called a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, if every element of 𝐴 is also an
element of 𝐵. If 𝐴 ⊆ 𝐵 but 𝐴 ≠ 𝐵, then 𝐴 is called a proper subset of 𝐵, denoted 𝐴 ⊂ 𝐵.

Definition 3 (Empty Set). [4] The empty set, denoted by ∅, is the unique set containing no elements. Formally, for any
set 𝐴, ∅ ⊆ 𝐴.

Definition 4 (Universal Set). A universal set, denoted by 𝑈, is the set that contains all elements under consideration in a
particular context. Every set discussed is assumed to be a subset of 𝑈.

Definition 5 (Rough Set Approximation). [5] Let 𝑋 be a nonempty universe of discourse, and let 𝑅 ⊆ 𝑋 × 𝑋 be an
equivalence relation (also called an indiscernibility relation) on 𝑋 . The relation 𝑅 partitions 𝑋 into disjoint equivalence
classes, denoted by [𝑥]𝑅 for each 𝑥 ∈ 𝑋 , where

[𝑥]𝑅 = {𝑦 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝑅}.
For any subset 𝑈 ⊆ 𝑋 , the lower approximation 𝑈 and the upper approximation 𝑈 are defined by:

(1) Lower Approximation:
𝑈 = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝑈}.

This set contains all elements whose entire equivalence class is contained within 𝑈; these elements definitely
belong to 𝑈.

(2) Upper Approximation:
𝑈 = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩𝑈 ≠ ∅}.

This set contains all elements whose equivalence class has a nonempty intersection with 𝑈; these elements possibly
belong to 𝑈.

Thus, the pair (𝑈,𝑈) forms the rough set representation of 𝑈, satisfying

𝑈 ⊆ 𝑈 ⊆ 𝑈.

Example 1 (Weather Forecasting using Rough Sets). Weather Forecasting is the science of predicting atmospheric
conditions—like temperature, precipitation, and wind—based on data from satellites, radars, and models ( [6–9]). Consider
a meteorological dataset collected over 100 days for a specific region. Each day is characterized by four attributes:

• Temperature (in °C),

• Humidity (in %),

• Wind speed (in km/h),

• Cloud cover (in %).

For illustration, assume we have data for five specific days:
Day Temperature Humidity Wind Speed Cloud Cover

1 20 70 15 80
2 22 75 10 90
3 18 65 20 50
4 21 80 12 85
5 19 68 18 55

Define an equivalence relation on days as follows: two days are equivalent if their temperatures differ by no more than 2°C
and their humidities differ by no more than 5%. Suppose this rule yields the equivalence classes

[1] = {1, 2, 4} and [3] = {3, 5}.
Assume historical records indicate that days 1, 2, and 4 were rainy, so we set the target concept 𝑋 = {1, 2, 4}. Then the
lower approximation 𝑋 is defined as

𝑋 = {𝑥 ∈ 𝑈 | [𝑥] ⊆ 𝑋}.
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Since the class [1] is entirely contained in 𝑋 , days 1, 2, and 4 are in 𝑋; however, the class [3] is not, so days 3 and 5 fall
into the boundary region. This analysis helps forecasters handle uncertainties by grouping similar weather days.

The HyperRough Set extends rough set theory by incorporating multiple attributes. Its formal definition is given
below [10–12].

Definition 6 (HyperRough Set). [10,13] Let 𝑋 be a nonempty finite universe, and let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be 𝑛 distinct attributes
with corresponding domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. Define the Cartesian product

𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑛.

Let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation on 𝑋 , with [𝑥]𝑅 denoting the equivalence class of 𝑥. A HyperRough Set over 𝑋
is a pair (𝐹, 𝐽), where:

• 𝐹 : 𝐽 → P(𝑋) is a mapping that assigns to each attribute value combination 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐽 a subset
𝐹 (𝑎) ⊆ 𝑋 .

• For each 𝑎 ∈ 𝐽, the rough set approximations of 𝐹 (𝑎) are defined as

𝐹 (𝑎) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝑎)}, 𝐹 (𝑎) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝑎) ≠ ∅}.

Here, 𝐹 (𝑎) comprises all elements whose equivalence classes are completely contained within 𝐹 (𝑎), while 𝐹 (𝑎) contains
elements whose equivalence classes intersect 𝐹 (𝑎). Additionally, the following properties hold for all 𝑎 ∈ 𝐽:

• 𝐹 (𝑎) ⊆ 𝐹 (𝑎).

• If 𝐹 (𝑎) = ∅, then 𝐹 (𝑎) = 𝐹 (𝑎) = ∅.

• If 𝐹 (𝑎) = 𝑋 , then 𝐹 (𝑎) = 𝐹 (𝑎) = 𝑋 .

Example 2 (Project Management using Hyperrough Sets). Project Management is the systematic process of planning,
organizing, executing, and monitoring tasks to achieve specific goals within defined time, budget, and scope constraints
(cf. [14, 15]). Imagine a project portfolio with 6 projects characterized by two attributes:

• Duration (in months),

• Risk Level (on a scale from 1 to 5).

Suppose the following data is available:

Project Duration Risk Level
𝑃1 12 2
𝑃2 18 4
𝑃3 15 3
𝑃4 20 5
𝑃5 10 1
𝑃6 16 3

Define an equivalence relation where two projects are equivalent if their durations differ by at most 3 months and their risk
levels by at most 1. Assume the following equivalence classes result:

[𝑃1] = {𝑃1, 𝑃3, 𝑃5} and [𝑃2] = {𝑃2, 𝑃4, 𝑃6}.
Let the target concept 𝑋 be the set of projects completed on schedule, say 𝑋 = {𝑃1, 𝑃3, 𝑃5}. The Hyperrough Set model
uses the Cartesian product of the attribute domains (e.g., Duration × Risk Level) to form refined groups. For example,
consider the attribute combination (12, 2) with

𝐹 ((12, 2)) = {𝑃1, 𝑃5}.
Then the lower approximation of 𝑋 with respect to this combination includes projects whose equivalence class is completely
contained in 𝑋 . This multi-attribute analysis allows project managers to evaluate projects more comprehensively by
considering both duration and risk factors simultaneously.
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An n-SuperHyperRough Set generalizes rough sets by using power sets of attribute values to produce nuanced approximations
under uncertainty. The definition of 𝑛-SuperHyperRough Sets is described as follows.

Definition 7 (𝑛-SuperHyperRough Set). [10, 16] Let 𝑋 be a nonempty finite universe, and let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be 𝑛 distinct
attributes with respective domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. For each attribute 𝑇𝑖 , let P(𝐽𝑖) denote its power set. Define the set of all
possible attribute value combinations as

𝐽 = P(𝐽1) × P(𝐽2) × · · · × P(𝐽𝑛).

Let 𝑅 ⊆ 𝑋 × 𝑋 be an equivalence relation on 𝑋 . An 𝑛-SuperHyperRough Set over 𝑋 is a pair (𝐹, 𝐽), where:

• 𝐹 : 𝐽 → P(𝑋) is a mapping that assigns to each attribute value combination 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ 𝐽 (with
𝐴𝑖 ⊆ 𝐽𝑖 for all 𝑖) a subset 𝐹 (𝐴) ⊆ 𝑋 .

• For each 𝐴 ∈ 𝐽, the lower and upper approximations are defined as

𝐹 (𝐴) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ⊆ 𝐹 (𝐴)}, 𝐹 (𝐴) = {𝑥 ∈ 𝑋 | [𝑥]𝑅 ∩ 𝐹 (𝐴) ≠ ∅}.

Thus, 𝐹 (𝐴) consists of all elements whose equivalence classes are entirely contained in 𝐹 (𝐴), and 𝐹 (𝐴) includes those
elements whose equivalence classes intersect 𝐹 (𝐴). The following properties hold for all 𝐴 ∈ 𝐽:

• 𝐹 (𝐴) ⊆ 𝐹 (𝐴).

• If 𝐹 (𝐴) = ∅, then 𝐹 (𝐴) = 𝐹 (𝐴) = ∅.

• If 𝐹 (𝐴) = 𝑋 , then 𝐹 (𝐴) = 𝐹 (𝐴) = 𝑋 .

• For any 𝐴, 𝐵 ∈ 𝐽,
𝐹 (𝐴 ∩ 𝐵) ⊆ 𝐹 (𝐴) ∩ 𝐹 (𝐵), 𝐹 (𝐴 ∪ 𝐵) ⊇ 𝐹 (𝐴) ∪ 𝐹 (𝐵).

Example 3 (Project Management using Superhyperrough Sets). Consider a scenario where a company evaluates 4
projects based on cost and quality. The attributes are defined as follows:

• Cost with domain 𝐽1 = {Low,Medium,High},

• Quality with domain 𝐽2 = {Poor, Fair,Good}.

For a more flexible analysis, the Superhyperrough Set model considers the power sets P(𝐽1) and P(𝐽2). For instance, an
element of P(𝐽1) could be {Low} or {Low,Medium}, and similarly for P(𝐽2). Define the super attribute space as

𝐽∗ = P(𝐽1) × P(𝐽2).

Suppose the following project data is given:

Project Cost Quality
𝑃1 Low Good
𝑃2 Medium Fair
𝑃3 High Poor
𝑃4 Low Fair

Let the target concept 𝑋 be projects that are considered "acceptable" based on performance, say 𝑋 = {𝑃1, 𝑃2, 𝑃4}. Using
the super attribute space, we can form attribute combinations such as

({Low}, {Good, Fair}),

and define
𝐹∗ (({Low}, {Good, Fair})

)
= {𝑃1, 𝑃4}.

Then, the lower approximation of 𝑋 with respect to this combination consists of projects for which every project in the
corresponding equivalence class is in 𝑋 . This finer granularity in handling attribute subsets helps decision makers identify
projects with acceptable performance more precisely, even when cost and quality assessments are subject to uncertainty.
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1.2|Probabilistic Rough Sets
Probabilistic Rough Sets provide a framework for estimating uncertainty by utilizing membership probabilities, allowing for
the definition of lower and upper approximations based on specified threshold values [17,18]. These sets offer a flexible and
intuitive approach to handling imprecise data. We formally define Probabilistic Rough Sets below. Due to their simplicity
and effectiveness, they have been extensively studied in numerous research works [19–23].

Definition 8 (Probabilistic Rough Set). (cf. [17, 18]) Let 𝑈 be a finite universe and let 𝑅 ⊆ 𝑈 × 𝑈 be an equivalence
relation on 𝑈. This relation partitions 𝑈 into disjoint equivalence classes, denoted by [𝑥]𝑅 for each 𝑥 ∈ 𝑈. For any subset
𝐴 ⊆ 𝑈, define the rough membership function 𝜇𝐴 : 𝑈 → [0, 1] by

𝜇𝐴(𝑥) =
|𝐴 ∩ [𝑥]𝑅 |
| [𝑥]𝑅 |

, for every 𝑥 ∈ 𝑈,

where |𝑆 | denotes the cardinality of set 𝑆. Given two thresholds 𝛼, 𝛽 ∈ [0, 1] satisfying 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, the 𝛼-level
probabilistic lower approximation of 𝐴 is defined as

𝐴𝛼 = {𝑥 ∈ 𝑈 | 𝜇𝐴(𝑥) ≥ 𝛼},
and the 𝛽-level probabilistic upper approximation of 𝐴 is defined as

𝐴𝛽 = {𝑥 ∈ 𝑈 | 𝜇𝐴(𝑥) > 𝛽}.
These definitions yield a probabilistic characterization of the set 𝐴: 𝐴𝛼 comprises those elements that are almost certainly
in 𝐴 (with membership at least 𝛼), while 𝐴𝛽 contains those elements that possibly belong to 𝐴 (with membership exceeding
𝛽).

Example 4 (Example of a Probabilistic Rough Set). Consider the finite universe
𝑈 = {1, 2, 3, 4, 5, 6},

and define an equivalence relation 𝑅 on 𝑈 such that the equivalence classes are:
[1]𝑅 = {1, 2}, [3]𝑅 = {3, 4}, [5]𝑅 = {5, 6}.

Let 𝐴 ⊆ 𝑈 be given by
𝐴 = {1, 2, 3, 5}.

We compute the rough membership function 𝜇𝐴(𝑥) for each 𝑥 ∈ 𝑈:

• For 𝑥 ∈ [1]𝑅 = {1, 2}:
𝜇𝐴(1) =

|{1, 2} ∩ 𝐴|
2

=
2
2
= 1, 𝜇𝐴(2) = 1.

• For 𝑥 ∈ [3]𝑅 = {3, 4}:
𝜇𝐴(3) =

|{3, 4} ∩ 𝐴|
2

=
1
2
= 0.5, 𝜇𝐴(4) = 0.5.

• For 𝑥 ∈ [5]𝑅 = {5, 6}:
𝜇𝐴(5) =

|{5, 6} ∩ 𝐴|
2

=
1
2
= 0.5, 𝜇𝐴(6) = 0.5.

Now, select thresholds 𝛼 = 0.8 and 𝛽 = 0.3. Then the 𝛼-level probabilistic lower approximation of 𝐴 is
𝐴0.8 = {𝑥 ∈ 𝑈 | 𝜇𝐴(𝑥) ≥ 0.8} = {1, 2},

since only the elements in the equivalence class {1, 2} have a membership value of 1 (which is ≥ 0.8). In contrast, the
𝛽-level probabilistic upper approximation of 𝐴 is

𝐴0.3 = {𝑥 ∈ 𝑈 | 𝜇𝐴(𝑥) > 0.3} = 𝑈,

because for every 𝑥 ∈ 𝑈, 𝜇𝐴(𝑥) is either 0.5 or 1, both of which exceed 0.3.

Thus, the probabilistic rough set approximations of 𝐴 are:

𝐴0.8 = {1, 2} and 𝐴0.3 = {1, 2, 3, 4, 5, 6}.
This example concretely illustrates how the rough membership function and the threshold parameters 𝛼 and 𝛽 are used to
derive probabilistic approximations of a set.
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1.3|Covering Rough Set
In classical rough set theory, an equivalence relation (or partition) is used to approximate a subset of a universe. In many
real-world applications, however, the information available does not naturally yield a partition but rather a cover – a family
of overlapping subsets whose union is the entire universe. Covering rough sets extend the classical model by using such
covers to define approximations [24–28].

Definition 9 (Cover). (cf. [25]) Let 𝑈 be a finite, nonempty set (called the universe). A collection C of nonempty
subsets of 𝑈 is called a cover of 𝑈 if ⋃

𝐶∈C

𝐶 = 𝑈.

Unlike a partition, the subsets in C may overlap; that is, for some 𝐶1, 𝐶2 ∈ C with 𝐶1 ≠ 𝐶2, we may have 𝐶1 ∩ 𝐶2 ≠ ∅.

Definition 10 (Covering Rough Set). [25] Let 𝑈 be a finite universe and let C be a cover of 𝑈. For any subset 𝑋 ⊆ 𝑈,
we define:

(1) The covering lower approximation of 𝑋 with respect to C as

𝑋C =
⋃

{𝐶 ∈ C | 𝐶 ⊆ 𝑋}.
This is the union of all covering sets that are completely contained in 𝑋 . Intuitively, these are the elements that
definitely belong to 𝑋 as their entire covering set is a subset of 𝑋 .

(2) The covering upper approximation of 𝑋 with respect to C as

𝑋C =
⋃

{𝐶 ∈ C | 𝐶 ∩ 𝑋 ≠ ∅}.
This is the union of all covering sets that have a nonempty intersection with 𝑋 . Intuitively, these are the elements
that possibly belong to 𝑋 because at least part of their covering set intersects 𝑋 .

The pair
(
𝑋C , 𝑋C

)
is called the covering rough set of 𝑋 with respect to the cover C.

A special case occurs when C is a partition. In that case, the covering lower and upper approximations coincide with the
classical rough set approximations.

Example 5 (Example of a Covering Rough Set). Consider the universe
𝑈 = {1, 2, 3, 4, 5, 6}.

Define a cover C of 𝑈 by
C = {𝐶1, 𝐶2, 𝐶3, 𝐶4},

where
𝐶1 = {1, 2, 3}, 𝐶2 = {2, 3, 4}, 𝐶3 = {4, 5}, 𝐶4 = {5, 6}.

Note that
4⋃
𝑖=1

𝐶𝑖 = {1, 2, 3, 4, 5, 6} = 𝑈.

Now, let
𝑋 = {2, 3, 4, 5} ⊆ 𝑈.

We compute the approximations as follows:

(1) Covering Lower Approximation: We include every 𝐶 ∈ C that is entirely contained in 𝑋:

• 𝐶1 = {1, 2, 3} is not included because 1 ∉ 𝑋 .

• 𝐶2 = {2, 3, 4} ⊆ 𝑋 is included.

• 𝐶3 = {4, 5} ⊆ 𝑋 is included.

• 𝐶4 = {5, 6} is not included because 6 ∉ 𝑋 .

Therefore,
𝑋C = 𝐶2 ∪ 𝐶3 = {2, 3, 4} ∪ {4, 5} = {2, 3, 4, 5} = 𝑋.



(2) Covering Upper Approximation: We include every 𝐶 ∈ C that has a nonempty intersection with 𝑋:

• 𝐶1 ∩ 𝑋 = {2, 3} ≠ ∅, so 𝐶1 is included.

• 𝐶2 ∩ 𝑋 = {2, 3, 4} ≠ ∅, so 𝐶2 is included.

• 𝐶3 ∩ 𝑋 = {4, 5} ≠ ∅, so 𝐶3 is included.

• 𝐶4 ∩ 𝑋 = {5} ≠ ∅, so 𝐶4 is included.

Therefore,

𝑋C = 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 = {1, 2, 3} ∪ {2, 3, 4} ∪ {4, 5} ∪ {5, 6} = {1, 2, 3, 4, 5, 6} = 𝑈.

Thus, the covering rough set approximation of 𝑋 is(
𝑋C , 𝑋C

)
=
(
𝑋,𝑈

)
.

The boundary region of 𝑋 is given by

BND(𝑋) = 𝑋C \ 𝑋C = 𝑈 \ 𝑋 = {1, 6}.
This example illustrates a scenario where 𝑋 is exactly defined by the cover in the sense that the lower approximation equals
𝑋 , yet the upper approximation spans the entire universe due to overlapping cover sets.

2|Results of This Paper
This section presents the results obtained in this paper.

2.1|Probabilistic Hyperrough Sets
We define Probabilistic hyperrough Sets as follows.

Definition 11 (Probabilistic Hyperrough Set). Let 𝑈 be a finite universe and let 𝑅 ⊆ 𝑈 × 𝑈 be an equivalence relation on
𝑈 that partitions 𝑈 into disjoint equivalence classes [𝑥]𝑅 for each 𝑥 ∈ 𝑈. Let 𝑇1, 𝑇2, . . . , 𝑇𝑚 be 𝑚 distinct attributes with
corresponding domains 𝐽1, 𝐽2, . . . , 𝐽𝑚. Define the Cartesian product

𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑚.

A mapping
𝐹 : 𝐽 → P(𝑈)

assigns to each attribute combination 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) ∈ 𝐽 a subset 𝐹 (𝑎) ⊆ 𝑈. For each 𝑎 ∈ 𝐽, the rough membership
function of 𝐹 (𝑎) is defined by

𝜇𝐹 (𝑎) (𝑥) =
|𝐹 (𝑎) ∩ [𝑥]𝑅 |

| [𝑥]𝑅 |
, ∀𝑥 ∈ 𝑈.

Given thresholds 𝛼, 𝛽 ∈ [0, 1] satisfying 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, we define the 𝛼-level probabilistic lower approximation of 𝐹 (𝑎)
by

𝐹 (𝑎)
𝛼
= {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝑎) (𝑥) ≥ 𝛼},

and the 𝛽-level probabilistic upper approximation of 𝐹 (𝑎) by

𝐹 (𝑎)𝛽 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝑎) (𝑥) > 𝛽}.

The pair (𝐹, 𝐽), together with the family of approximation operators {𝐹 (𝑎)
𝛼
, 𝐹 (𝑎)𝛽 | 𝑎 ∈ 𝐽}, is called a Probabilistic

Hyperrough Set over 𝑈.

Theorem 1. A Probabilistic Hyperrough Set generalizes both the classical Probabilistic Rough Set and the Hyperrough
Set.

Proof : We consider two limiting cases:
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(1) Singleton Attribute Space: If the attribute space 𝐽 is a singleton (i.e., 𝐽 = {𝑎0}), then the mapping 𝐹 reduces
to a single subset 𝐹 (𝑎0) ⊆ 𝑈. In this case, the rough membership function 𝜇𝐹 (𝑎0 ) (𝑥) is identical to that in
the standard Probabilistic Rough Set model. Consequently, the approximations 𝐹 (𝑎0)

𝛼
and 𝐹 (𝑎0)𝛽 recover the

classical probabilistic rough set approximations.

(2) Extreme Thresholds: If we set the thresholds to 𝛼 = 1 and 𝛽 = 0, then for every 𝑥 ∈ 𝑈,

𝐹 (𝑎)
1
= {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝑎) (𝑥) = 1} and 𝐹 (𝑎)0 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝑎) (𝑥) > 0}.

These definitions coincide with those of the Hyperrough Set model, where the lower approximation comprises
all elements whose entire equivalence classes are contained in 𝐹 (𝑎), and the upper approximation includes all
elements whose equivalence classes intersect 𝐹 (𝑎).

Thus, the Probabilistic Hyperrough Set model encompasses both the Probabilistic Rough Set (singleton case) and the
Hyperrough Set (extreme threshold case) models. □

Example 6 (Probabilistic Hyperrough Set). Consider the finite universe

𝑈 = {1, 2, 3, 4, 5, 6},
with an equivalence relation 𝑅 defined by the following equivalence classes:

[1]𝑅 = {1, 2}, [3]𝑅 = {3, 4}, [5]𝑅 = {5, 6}.
Let there be a single attribute 𝑇1 with domain 𝐽1 = {red, blue}. Then,

𝐽 = 𝐽1 = {red, blue}.
Define the mapping 𝐹 : 𝐽 → P(𝑈) by:

𝐹 (red) = {1, 2, 3} and 𝐹 (blue) = {4, 5, 6}.
For 𝑎 = red, compute the rough membership function:

• For 𝑥 ∈ [1]𝑅 = {1, 2}:

𝜇𝐹 (red) (𝑥) =
|{1, 2} ∩ {1, 2, 3}|

2
=

2
2
= 1.

• For 𝑥 ∈ [3]𝑅 = {3, 4}:

𝜇𝐹 (red) (𝑥) =
|{3, 4} ∩ {1, 2, 3}|

2
=

1
2
= 0.5.

• For 𝑥 ∈ [5]𝑅 = {5, 6}:

𝜇𝐹 (red) (𝑥) =
|{5, 6} ∩ {1, 2, 3}|

2
= 0.

If we choose thresholds 𝛼 = 0.8 and 𝛽 = 0.3, then:

𝐹 (red)
0.8

= {𝑥 ∈ 𝑈 | 𝜇𝐹 (red) (𝑥) ≥ 0.8} = {1, 2},

and
𝐹 (red)0.3 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (red) (𝑥) > 0.3} = {1, 2, 3, 4}.

Thus, the probabilistic hyperrough approximations for the attribute value "red" are 𝐹 (red)
0.8

= {1, 2} and 𝐹 (red)0.3 =

{1, 2, 3, 4}.

Similarly, for 𝑎 = blue, with 𝐹 (blue) = {4, 5, 6}:

• For 𝑥 ∈ [1]𝑅 = {1, 2}:

𝜇𝐹 (blue) (𝑥) =
|{1, 2} ∩ {4, 5, 6}|

2
= 0.

• For 𝑥 ∈ [3]𝑅 = {3, 4}:

𝜇𝐹 (blue) (𝑥) =
|{3, 4} ∩ {4, 5, 6}|

2
=

1
2
= 0.5.
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• For 𝑥 ∈ [5]𝑅 = {5, 6}:
𝜇𝐹 (blue) (𝑥) =

|{5, 6} ∩ {4, 5, 6}|
2

=
2
2
= 1.

With the same thresholds, we obtain:

𝐹 (blue)
0.8

= {𝑥 ∈ 𝑈 | 𝜇𝐹 (blue) (𝑥) ≥ 0.8} = {5, 6},

and
𝐹 (blue)0.3 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (blue) (𝑥) > 0.3} = {3, 4, 5, 6}.

This example clearly illustrates how the probabilistic hyperrough set model works.

2.2|Probabilistic 𝑛-Superhyperrough Sets
We define Probabilistic 𝑛-Superhyperrough Sets as follows.

Definition 12 (Probabilistic 𝑛-Superhyperrough Set). Let 𝑈 be a finite universe and 𝑅 ⊆ 𝑈 ×𝑈 be an equivalence relation
on 𝑈. Let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be 𝑛 distinct attributes with corresponding domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. For each attribute 𝑇𝑖 , denote by
P(𝐽𝑖) its power set, and define the Cartesian product

𝐽 = P(𝐽1) × P(𝐽2) × · · · × P(𝐽𝑛).
A mapping

𝐹 : 𝐽 → P(𝑈)
assigns to each combination 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ 𝐽 (with 𝐴𝑖 ⊆ 𝐽𝑖) a subset 𝐹 (𝐴) ⊆ 𝑈. For each 𝐴 ∈ 𝐽, define the
rough membership function 𝜇𝐹 (𝐴) : 𝑈 → [0, 1] by

𝜇𝐹 (𝐴) (𝑥) =
|𝐹 (𝐴) ∩ [𝑥]𝑅 |

| [𝑥]𝑅 |
, ∀𝑥 ∈ 𝑈.

Given thresholds 𝛼, 𝛽 ∈ [0, 1] with 0 ≤ 𝛽 ≤ 𝛼 ≤ 1, the 𝛼-level probabilistic lower approximation of 𝐹 (𝐴) is defined as

𝐹 (𝐴)
𝛼
= {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝐴) (𝑥) ≥ 𝛼},

and the 𝛽-level probabilistic upper approximation is defined as

𝐹 (𝐴)𝛽 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝐴) (𝑥) > 𝛽}.
Then, the pair (𝐹, 𝐽) is called a Probabilistic 𝑛-Superhyperrough Set over 𝑈.

Theorem 2. A Probabilistic 𝑛-Superhyperrough Set generalizes both the Probabilistic Hyperrough Set and the classical
𝑛-Superhyperrough Set.

Proof : (i) If, for each attribute 𝑇𝑖 , the power set P(𝐽𝑖) is restricted to singletons (i.e., 𝐴𝑖 is a singleton for every 𝑖), then 𝐽

reduces to the Cartesian product 𝐽1 × 𝐽2 × · · · × 𝐽𝑛. In this case, the mapping 𝐹 becomes identical to that of the Hyperrough
Set model, and the approximations 𝐹 (𝐴)

𝛼
and 𝐹 (𝐴)𝛽 are the same as those in the Probabilistic Hyperrough Set model.

(ii) Conversely, if the thresholds are set to their extreme values, 𝛼 = 1 and 𝛽 = 0, then for each 𝑥 ∈ 𝑈,

𝐹 (𝐴)
1
= {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝐴) (𝑥) = 1} and 𝐹 (𝐴)0 = {𝑥 ∈ 𝑈 | 𝜇𝐹 (𝐴) (𝑥) > 0},

which coincides with the classical 𝑛-Superhyperrough Set definitions.

Thus, the Probabilistic 𝑛-Superhyperrough Set model encompasses both the Probabilistic Hyperrough Set and the
𝑛-Superhyperrough Set. □

Example 7 (Probabilistic 𝑛-Superhyperrough Set Example). Let

𝑈 = {1, 2, 3, 4, 5},
with an equivalence relation 𝑅 defined by:

[1]𝑅 = {1, 2}, [3]𝑅 = {3, 4}, [5]𝑅 = {5}.
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Assume a single attribute 𝑇1 with domain 𝐽1 = {A,B}. Then, its power set is

P(𝐽1) = {∅, {A}, {B}, {A,B}},
and we set 𝐽 = P(𝐽1). Define the mapping 𝐹 : 𝐽 → P(𝑈) as follows:

𝐹 (∅) = ∅,
𝐹 ({A}) = {1, 2, 3},
𝐹 ({B}) = {4, 5},

𝐹 ({A,B}) = 𝑈.

For 𝐴 = {A}, we have 𝐹 ({A}) = {1, 2, 3}. Then:

• For 𝑥 ∈ [1]𝑅 = {1, 2}:

𝜇𝐹 ({A}) (𝑥) =
|{1, 2} ∩ {1, 2, 3}|

2
= 1.

• For 𝑥 ∈ [3]𝑅 = {3, 4}:

𝜇𝐹 ({A}) (𝑥) =
|{3, 4} ∩ {1, 2, 3}|

2
=

1
2
= 0.5.

• For 𝑥 ∈ [5]𝑅 = {5}:

𝜇𝐹 ({A}) (𝑥) =
|{5} ∩ {1, 2, 3}|

1
= 0.

Choosing thresholds 𝛼 = 0.8 and 𝛽 = 0.3, we obtain:

𝐹 ({A})
0.8

= {𝑥 ∈ 𝑈 | 𝜇𝐹 ({A}) (𝑥) ≥ 0.8} = {1, 2},

and
𝐹 ({A})0.3 = {𝑥 ∈ 𝑈 | 𝜇𝐹 ({A}) (𝑥) > 0.3} = {1, 2, 3, 4}.

For 𝐴 = {B}, with 𝐹 ({B}) = {4, 5}:

• For 𝑥 ∈ [3]𝑅 = {3, 4}:

𝜇𝐹 ({B}) (𝑥) =
|{3, 4} ∩ {4, 5}|

2
=

1
2
= 0.5.

• For 𝑥 ∈ [5]𝑅 = {5}:

𝜇𝐹 ({B}) (𝑥) =
|{5} ∩ {4, 5}|

1
= 1.

• For 𝑥 ∈ [1]𝑅 = {1, 2}:
𝜇𝐹 ({B}) (𝑥) = 0.

Thus,
𝐹 ({B})

0.8
= {5} and 𝐹 ({B})0.3 = {3, 4, 5}.

This example clearly demonstrates how the Probabilistic 𝑛-Superhyperrough Set model refines the approximations by
incorporating power set combinations of attribute values.

2.3|Covering Hyperrough Set
We define Covering Hyperrough Set as follows.

Definition 13 (Covering Hyperrough Set). Let 𝑈 be a finite universe, C a cover of 𝑈, and let 𝑇1, 𝑇2, . . . , 𝑇𝑚 be 𝑚 distinct
attributes with corresponding domains 𝐽1, 𝐽2, . . . , 𝐽𝑚. Define the Cartesian product

𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑚.

A mapping
𝐹 : 𝐽 → P(𝑈)
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assigns to each attribute combination 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) ∈ 𝐽 a subset 𝐹 (𝑎) ⊆ 𝑈. Then, for each 𝑎 ∈ 𝐽, the covering
hyperrough approximations of 𝐹 (𝑎) with respect to the cover C are defined as:

𝐹 (𝑎)C =
⋃

{𝐶 ∈ C | 𝐶 ⊆ 𝐹 (𝑎)},

𝐹 (𝑎)C =
⋃

{𝐶 ∈ C | 𝐶 ∩ 𝐹 (𝑎) ≠ ∅}.

The collection (𝐹, 𝐽) together with the family {(𝐹 (𝑎) C , 𝐹 (𝑎) C ) | 𝑎 ∈ 𝐽} is called a Covering Hyperrough Set over 𝑈.

Theorem 3. A Covering Hyperrough Set generalizes both the classical Covering Rough Set and the Hyperrough Set.

Proof : Case 1 (Reduction to Covering Rough Set): If the attribute space 𝐽 is a singleton (i.e., 𝐽 = {𝑎0}) and 𝐹 (𝑎0) = 𝑋

for some 𝑋 ⊆ 𝑈, then the definitions reduce to:

𝐹 (𝑎0)C = 𝑋C and 𝐹 (𝑎0)C = 𝑋C ,

which is exactly the classical covering rough set approximation of 𝑋 .

Case 2 (Reduction to Hyperrough Set): If the cover C is a partition of 𝑈 (i.e., each 𝐶 ∈ C is an equivalence class of an
equivalence relation 𝑅) and 𝐹 is constant (so that 𝐹 (𝑎) = 𝑋 for all 𝑎 ∈ 𝐽), then the approximations become

𝐹 (𝑎)C = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ⊆ 𝑋} and 𝐹 (𝑎)C = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ∩ 𝑋 ≠ ∅},

which are precisely the hyperrough set approximations of 𝑋 .

Thus, the Covering Hyperrough Set model indeed generalizes both frameworks. □

Example 8 (Covering Hyperrough Set). Let

𝑈 = {1, 2, 3, 4, 5, 6},
and consider the cover

C = {𝐶1, 𝐶2, 𝐶3},
with

𝐶1 = {1, 2}, 𝐶2 = {2, 3, 4}, 𝐶3 = {5, 6}.
Let there be one attribute 𝑇1 with domain 𝐽1 = {red, blue} so that

𝐽 = {red, blue}.
Define the mapping 𝐹 : 𝐽 → P(𝑈) by:

𝐹 (red) = {1, 2, 3, 4}, 𝐹 (blue) = {3, 4, 5, 6}.

For 𝑎 = red, we have 𝐹 (red) = {1, 2, 3, 4}:

• 𝐶1 = {1, 2} ⊆ 𝐹 (red) ⇒ included in the lower approximation.

• 𝐶2 = {2, 3, 4} ⊆ 𝐹 (red) ⇒ included in the lower approximation.

• 𝐶3 = {5, 6} does not intersect 𝐹 (red) ⇒ excluded.

Thus,
𝐹 (red)C = 𝐶1 ∪ 𝐶2 = {1, 2, 3, 4}.

For the upper approximation, all cover elements that intersect 𝐹 (red) are included. Here,

𝐶1 ∩ 𝐹 (red) ≠ ∅, 𝐶2 ∩ 𝐹 (red) ≠ ∅,
so

𝐹 (red)C = 𝐶1 ∪ 𝐶2 = {1, 2, 3, 4}.

For 𝑎 = blue, with 𝐹 (blue) = {3, 4, 5, 6}:

• 𝐶1 = {1, 2} does not intersect 𝐹 (blue) ⇒ excluded.

• 𝐶2 = {2, 3, 4} has nonempty intersection ({3, 4}) ⇒ included in the upper approximation.
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• 𝐶3 = {5, 6} ⊆ 𝐹 (blue) ⇒ included in both the lower and upper approximations.

Thus,
𝐹 (blue)C = 𝐶3 = {5, 6},

𝐹 (blue)C = 𝐶2 ∪ 𝐶3 = {2, 3, 4, 5, 6}.
This example demonstrates how the Covering Hyperrough Set model uses both the cover C and the attribute mapping 𝐹 to
yield approximations.

2.4|Covering 𝑛-Superhyperrough Set
We define Covering 𝑛-Superhyperrough Set as follows.

Definition 14 (Covering 𝑛-Superhyperrough Set). Let 𝑈 be a finite universe and let C be a cover of 𝑈. Let 𝑇1, 𝑇2, . . . , 𝑇𝑛
be 𝑛 distinct attributes with corresponding domains 𝐽1, 𝐽2, . . . , 𝐽𝑛. For each attribute 𝑇𝑖 , let P(𝐽𝑖) denote its power set, and
define the Cartesian product

𝐽 = P(𝐽1) × P(𝐽2) × · · · × P(𝐽𝑛).
A mapping

𝐹 : 𝐽 → P(𝑈)
assigns to each attribute value combination 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) ∈ 𝐽 (with 𝐴𝑖 ⊆ 𝐽𝑖 for each 𝑖) a subset 𝐹 (𝐴) ⊆ 𝑈. The
covering 𝑛-superhyperrough approximations of 𝐹 (𝐴) with respect to the cover C are defined as:

𝐹 (𝐴)C =
⋃

{𝐶 ∈ C | 𝐶 ⊆ 𝐹 (𝐴)},

𝐹 (𝐴)C =
⋃

{𝐶 ∈ C | 𝐶 ∩ 𝐹 (𝐴) ≠ ∅}.
The pair (𝐹, 𝐽) is then called a Covering 𝑛-Superhyperrough Set over 𝑈.

Theorem 4. A Covering 𝑛-Superhyperrough Set generalizes both the Covering Hyperrough Set and the classical
𝑛-Superhyperrough Set.

Proof : (i) Reduction to Covering Hyperrough Set: If for each attribute 𝑇𝑖 we restrict P(𝐽𝑖) to singleton sets (i.e., every
𝐴𝑖 is a singleton), then 𝐽 becomes

𝐽 = 𝐽1 × 𝐽2 × · · · × 𝐽𝑛,

and the mapping 𝐹 coincides with that used in the Covering Hyperrough Set model. Thus, the approximations 𝐹 (𝐴)C and
𝐹 (𝐴)C are exactly those of a Covering Hyperrough Set.

(ii) Reduction to Classical 𝑛-Superhyperrough Set: If, additionally, the cover C is a partition (i.e., it is induced by an
equivalence relation on 𝑈), then the approximations reduce to:

𝐹 (𝐴)C = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ⊆ 𝐹 (𝐴)}, 𝐹 (𝐴)C = {𝑥 ∈ 𝑈 | [𝑥]𝑅 ∩ 𝐹 (𝐴) ≠ ∅},

which are precisely the approximations used in the classical 𝑛-Superhyperrough Set model.

Therefore, the Covering 𝑛-Superhyperrough Set model unifies and generalizes both the Covering Hyperrough Set and the
𝑛-Superhyperrough Set. □

Example 9 (Covering 𝑛-Superhyperrough Set). Let

𝑈 = {1, 2, 3, 4, 5, 6, 7, 8},
and let the cover C of 𝑈 be given by

C = {𝐶1, 𝐶2, 𝐶3},
where

𝐶1 = {1, 2, 3}, 𝐶2 = {3, 4, 5}, 𝐶3 = {6, 7, 8}.
Assume there is one attribute 𝑇1 with domain 𝐽1 = {X,Y}. Then, the power set is

P(𝐽1) = {∅, {X}, {Y}, {X,Y}},
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and we set 𝐽 = P(𝐽1). Define the mapping 𝐹 : 𝐽 → P(𝑈) by:
𝐹 (∅) = ∅,

𝐹 ({X}) = {1, 2, 3, 4},
𝐹 ({Y}) = {4, 5, 6, 7},

𝐹 ({X,Y}) = 𝑈.

For 𝐴 = {X}, 𝐹 ({X}) = {1, 2, 3, 4}:

• 𝐶1 = {1, 2, 3} ⊆ {1, 2, 3, 4} is included in the lower approximation.

• 𝐶2 = {3, 4, 5} is not completely contained in {1, 2, 3, 4} (since 5 ∉ 𝐹 ({X})), but 𝐶2 ∩ 𝐹 ({X}) = {3, 4} ≠ ∅ so it
is included in the upper approximation.

• 𝐶3 = {6, 7, 8} does not intersect {1, 2, 3, 4} and is excluded.

Thus,
𝐹 ({X})C = 𝐶1 = {1, 2, 3},

𝐹 ({X})C = 𝐶1 ∪ 𝐶2 = {1, 2, 3, 4, 5}.

For 𝐴 = {Y}, 𝐹 ({Y}) = {4, 5, 6, 7}:

• 𝐶1 does not intersect 𝐹 ({Y}) and is excluded.

• 𝐶2 = {3, 4, 5} has a nonempty intersection with 𝐹 ({Y}) ({4, 5}) and is included.

• 𝐶3 = {6, 7, 8} satisfies 𝐶3 ∩ 𝐹 ({Y}) = {6, 7} and is also included.

Thus,
𝐹 ({Y})C = 𝐶3 ∩ 𝐹 ({Y}) (if 𝐶3 ⊆ 𝐹 ({Y})), here 𝐶3 ⊈ 𝐹 ({Y}),

so we take the union of those 𝐶 completely contained in 𝐹 ({Y}). Suppose only 𝐶3 qualifies partially, then the lower
approximation might be empty; however, the upper approximation is given by

𝐹 ({Y})C = 𝐶2 ∪ 𝐶3 = {3, 4, 5, 6, 7, 8}.
This example shows that the approximations vary with the chosen attribute combination. The model is flexible enough to
capture both disjunctive and conjunctive relationships among attribute values.

3|Conclusion and Future Work
In this paper, we introduced several new variants of Rough Set concepts. Looking ahead, there are multiple possibilities
for extending these results by incorporating other related Rough Set frameworks. Specifically, further expansions can be
explored by leveraging Fuzzy Rough Sets [29,30], Soft Rough Sets [31,32], Neutrosophic Rough Sets [33,34], Multigranular
Rough Sets [35], Tree Rough Sets [36, 37], Weighted Rough Sets [38, 39], and Neighborhood Rough Sets [40, 41]. Each of
these frameworks offers a distinct way to manage uncertainty and granularity, and their integration with the newly defined
Rough Set variants could yield powerful methods for data analysis and decision-making.
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Disclaimer

This work presents theoretical concepts that have not yet undergone practical testing or validation. Future researchers are
encouraged to apply and assess these ideas in empirical contexts. While every effort has been made to ensure accuracy and
appropriate referencing, unintentional errors or omissions may still exist. Readers are advised to verify referenced materials
on their own. The views and conclusions expressed here are the authors’ own and do not necessarily reflect those of their
affiliated organizations.
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