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Abstract

The Critical Path Method (CPM) is an important tool in project management. However, the traditional
form of CPM deals with complications associated with the ambiguity and uncertainty in estimating the
duration of activities. This paper presents two new methods to solve the Neutrosophic Critical Path
Method (Neu-CPM), utilizing Triangular Neutrosophic Numbers (TNNs) to define activity durations under
indeterminacy. The methods are designed to conduct a forward pass and backward pass simultaneously to
find the earliest and latest time for each event while at the same time to find the total float for each activity,
enabling project scheduling under uncertain conditions. Neu-CPM provides a more improved approach to
handling non-precise and incomplete data compared to the traditional fuzzy or intuitionistic approaches,
based on its inclusion of membership degrees of truth, indeterminacy, and falsity. A numerical example
is provided showing the methodology’s ability to identify the project’s critical path in a neutrosophic
environment while studying the effect of various risk elements on the critical path. The results show that
Neu-CPM provides the opportunity of more flexibility, accuracy, and reliability in project scheduling in
uncertain conditions, with useful applications to practice.

Keywords: Neutrosophic set, Project scheduling, Triangular neutrosophic number, Critical path
method.
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1|Introduction
The Critical Path Method or CPM is an advanced project management methodology that helps you identify the
longest sequence of dependent tasks (critical path), providing you with the shortest duration possible to complete
the project [1]. By declaring the duration and interdependencies of tasks, CPM allows you to optimize schedules
and resources and identify completion dates on tasks that could delay the overall schedule if not performed timely
[2]. CPM is commonly used in construction, engineering, software development, and manufacturing, all of which
require a schedule as part of the project success [3]. An important limitation of CPM has been its assumption of
fixed activity durations, which can often be unrealistic in the changing world of delays and unknowns [4]. When
activity durations have an expectation of uncertainty, traditional CPM can produce schedules that cannot be
relied upon. In cases where unreliable activity durations are expected, traditional CPM can be augmented with
methods such as a Program Evaluation and Review Technique (PERT) and the Monte Carlo method to model
duration that is probabilistic in nature [5]. However, these methods require a large amount of historical data
and may not sufficiently capture subjective uncertainties, which leads to the consideration of fuzzy logic-based
approaches [6].
Zadeh [6] describes fuzzy set theory further developed from classical set theory, where partial membership is
allowable, and by using membership functions they are able to express vague or uncertain data as well. Unlike
probabilistic approaches, fuzzy logic studies uncertainty without representing the uncertainty using true
probability distributions [7]. In project scheduling, fuzzy sets can represent quantities that have uncertain
duration using examples of linguistic variables such as: "short", "medium" and "long"; allowing for a less structured
way of making decisions when uncertainty is present. Fuzzy Critical Path Method (FCPM) integrates fuzzy set
theory and traditional CPM, which allows for representation of uncertain activity durations as fuzzy numbers [8].
This method allows for more realistic scheduling in uncertain environments; however it does have limitations. The
fuzzy arithmetic makes the process more computationally intensive and it may present difficulty for practicing
professionals when trying to interpret the fuzzy critical paths [9]. In addition, fuzzy CPM is also very dependent
on expert judgment to establish membership functions, which is also susceptible to bias [10]. Despite these
issues, FCPM remains a useful tool to apply in very uncertain project environments.
Fuzzy set theory captures uncertainty well within the framework of membership functions, whereas hesitation or
indeterminacy is difficult to represent [11]. One major problem is that fuzzy sets only take into account the
membership (µ) of an element. Fuzzy sets ignore the non-membership degree (ν) and the hesitation margin
(π) that occurs when experts are uncertain about their assessments [11]. Without proper representations of
IFS, uncertainty in settings with complexity can lead to incorrect or biased assumptions as more information
tends to be missing or viewed as incomplete. With the need to address the limitations of fuzzy sets, Atanassov
(1986) [11] introduced Intuitionistic Fuzzy Sets (IFS) to extend fuzzy sets by including degrees of uncertainty
(i.e., membership (µ) and non-membership (ν), where 0 ≤ µ + ν ≤ 1, with overlap reflecting the remaining
value (π = 1 − µ − ν), in regard to unsure. Therefore, instead of a soft set, IFS can represent uncertainty,
particularly in assessing the extent of incomplete or conflicting expert judgments [12]. Due to its practicality,
IFS has received large attention for application in decision-making, risk assessment, and even project scheduling,
where fuzzy set theory does not measure ambiguity in the real world. Although IFS is a step forward from
conventional fuzzy sets using membership degree (µ), non-membership degree (ν), and hesitation degree (π), IFS
still have limitations when it comes to representing indeterminate, inconsistent, or incomplete information [13].
IFS assumes that µ+ ν ≤ 1, but could lead to the decision-makers facing problems that they would categorize
with µ+ ν > 1 when they have competing evidence or indeterminate (neutral) information [14]. Neutrosophic
Sets (NS) were defined and developed by Smarandache (1999) [13], and expanded upon the developing work of
IFS, where they are presented in the constructs of truth-membership (T), indeterminacy-membership (I), and
falsity-membership (F), where 0 ≤ T + I + F ≤ 3. This offers greater flexibility with uncertainty, particularly
with incomplete knowledge, contradictions, neutrality issues [15]. Neutrosophic theory has applications in many
fields including decision-making, medical diagnosis, engineering, artificial intelligence and machine learning. It
can also be used in cybersecurity, data analysis, sensor data fusion, risk assessment, pattern matching and
information retrieval [16-22]. Its usefulness comes from being able to handle indeterminate,
unknown and inconsistent information, which makes it helpful in improving analytical efforts, optimizing systems,
and improving the accuracy of decision-making in complex and uncertain situations.



Recent studies have illustrated that neutrosophic logic is a viable technique for dealing with uncertainties
arising from project scheduling. The traditional techniques used in project scheduling, such as CPM and PERT,
typically rely on deterministic or fuzzy methods that merely fail to account for ambiguity in real-world situations.
for example, Mohamed et al. [23] pioneered neutrosophic CPM using triangular neutrosophic numbers
(TNNs), which is now a logical framework to deal with ambiguous activity durations and exhibit the best
decision-making study. Priyadharsini et al. [24] also extended neutrosophic logic by introducing the
Triangular Neutrosophic PERT (TNP) allowing for uncertainties within textile project development, which
exhibited a more accurate predictive measure of time and cost. Again, this study was further developed by
Pratyusha and Kumar [25] who complemented decision making through the use of neutrophysics logic and time-
cost tradeoff analysis to demonstrate the feasibility of an integrated platform in conditions of uncertainty.
Similarly, Sinika and Ramesh [26] introduced trapezoidal neutrosophic sets for an extended analysis
of critical paths further allowing the deportation of uncertainty. In another study, Secretariat [27]
developed a Neutrosophic CPM (NCPM) in Python software to demonstrate an ability to conduct computations
for larger projects in terms of feasibility and consistency. In addition, Romero et al. [28] developed
neutrosophic statistics protocols applied to PERT enabled improvements for forecasting durations for IT projects
demonstrating the effective use of neutrosophic representations for uncertainties.

These studies revealed the advantages of using neutrosophic methods as uncertainty representation, advantages
to scheduling benefits, and improved decision-making. however, challenges to this streamline approach remain
with regards to computational efficiencies and real-world implications. Future research should envisage new
hybrid model combinations of neutrosophic logic being used with machine learning constructing hybrid protocols
for project planning into a dynamic and evolving project environment.

The primary purpose of the article is explained below

(1) The Neutrosophic Critical Path Method (Neu-CPM) is designed by extending the Critical Path Method,
utilising Neutrosophic Sets (NS) to account for uncertainties in the durations and costs of tasks of project
management.

(2) Neu-CPM, using Triangular Neutrosophic Numbers (TNNs) adds an additional level of uncertainty as it
better describes the vagueness which enhances the reality of project planning and established schedules.

(3) This study proposes two techniques for calculating the critical path based on varying levels of risk
associated with a risk factor δ ∈ [0, 1].

(4) The possibility mean function is then employed to convert the Neutrosophic activity into the relevant
crisp activity.

The subsequent sections of this article have been organized in a definitive way: Section 2 contains the definitions,
results, and theorems related to the Neutrosophic Set. Section 3 discusses the development of Neutrosophic
CPM by modeling the activity as a Triangular Neutrosophic Number. Section 4 discusses two ways to solve
CPM problems and gives the algorithms, and Section 5 include two numerical examples to demonstrate the
applied nature of the methodology. Finally, Section 6 concludes with comments and thoughts about the findings
as well as possible directions for future research.

2|Preliminary Concepts
Preliminary. [[6]] The fuzzy set (FS) F̂ is defined as

F̂ = {⟨x;µF ⟩ : x ∈ Ω}, (1)

where µF : Ω → [0, 1] is the membership grade function. [[11]] The Intuitionistic fuzzy set (IFS) Î is defined as

Î = {⟨x;µI , νI⟩ : x ∈ Ω}, (2)

where µI , νI : Ω → [0, 1] is the membership and non-membership grades and satisfied 0 ≤ µI + νI ≤ 1. [[13]]
The Neutrosophic set (NS) N̂ is defined as

N̂ = {⟨x;ϕN , φN , ψN ⟩ : x ∈ Ω}, (3)
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where ϕN , φN , ψN : Ω → [0, 1] are the truth, indeterminate and falsity membership grades and satisfy 0 ≤
µN + νN + ωN ≤ 3.

[[29]] Triangular neutrosophic number (TNN) is denoted by X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩, in which there are
three membership grades of x are given below:

T(x) =



x− xL

xM − xL
ϕx, x

L ≤ x ≤ xM

ϕx, x = xM

xU − x

xU − xM
ϕx, x

M ≤ x ≤ xU

0, otherwise

I(x) =



xM − x+ φx(x− xL)
xM − xL

, xL ≤ x ≤ xM

φx, x = aM

x− xM + φx(xU − x)
xU − xM

xM ≤ x ≤ xU

1, otherwise

F(x) =



xM − x+ ψx(x− xL)
xM − xL

, xL ≤ x ≤ xM

ψx, x = xM

x− xM + ψx(xU − x)
xU − xM

, xM ≤ x ≤ xU

1, otherwise
where 0 ≤ T(x) + I(x) + F(x) ≤ 3, x ∈ Ω.

[[29]] Suppose X̂1 = ⟨xL
1 , x

M
1 , xU

1 ;ϕx1 , φx1 , ψx1⟩ and X̂2 = ⟨xL
2 , x

M
2 , xU

2 ;ϕx2 , φx2 , ψx2⟩ are two TNNs. The
arithmetic operations are given as

(1) X̂1 ⊕ X̂2 = ⟨xL
1 + xL

2 , x
M
1 + xM

2 , xU
1 + xU

2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

(2) X̂1 − X̂2 = ⟨xL
1 − xU

2 , x
M
1 − xM

2 , xU
1 − xL

2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

(3) X̂1 ⊗ X̂2 = ⟨xL
1 x

L
2 , x

M
1 xM

2 , xU
1 x

U
2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

(4) λX̂1 =
{

⟨λxL
1 , λx

M
1 , λxU

1 ;ϕx1 , φx1 , ψx1⟩, λ > 0
⟨λxU

1 , λx
M
1 , λxL

1 ;ϕx1 , φx1 , ψx1⟩, λ < 0
where a ∧ b = min(a, b) and a ∨ b = max(a, b).

[[30]] The α, β & γ−cut for a TNN X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩, is defined as

X̂(α,β,γ) = {x : ϕx ≥ α,φx ≤ β, ψx ≤ γ}, (4)
where 0 ≤ α ≤ ϕx, φx ≤ β ≤ 1 and ψx ≤ γ ≤ 1.

[[31]] The possibility means over the risk parameter δ ∈ [0, 1] of truth, indeterminate, and falsity membership
grades of X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩ are redefined as:

ℑ̃(X̂) = δ µ(X̂α) + (1 − δ)
(µ(X̂β) + µ(X̂γ)

2

)
. (5)

That implies

ℑ̃(X̂) = δ
(xL + 4xM + xU

6

)
ϕ2

x + 1 − δ

2

(
2[xL + xM + xU ] − [xL − 2xM + xU ]φx−[xL + 4xM + xU ]φ2

x

6

+2[xL + xM + xU ] − [xL − 2xM + xU ]ψx−[xL + 4xM + xU ]ψ2
x

6

)
. (6)

[[31]] For two TNNs X̂1 and X̂2, we say that

(1) X̂1 ≼ X̂2 if and only if ℑ̃(X̂1) ≤ ℑ̃(X̂2),

(2) X̂1 ≺ X̂2 if and only if ℑ̃(X̂1) < ℑ̃(X̂2),

(3) X̂1 ≈ X̂2 if and only if ℑ̃(X̂1) = ℑ̃(X̂2),
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where ℑ̃(.) is the possibility mean function for TNN.

3|Development of Neutrosophic CPM
Consider network N = ⟨Eij⟩, being a project model, is given. E is asset of events(nodes) and A ⊂ E × E is a
set of activities. The set E = {1, 2, . . . , n} is labeled in such a way that the following condition holds: (i, j) ∈ A
and i < j. The activity times in the network are determined by Tij . The following are the essential notations in
the Neu-CPM which generalizes the classical approach to project scheduling by adding uncertainty through
Neutrosophic sets.

Tie =Earliest occurrence time of predecessor event i,
Til = Latest occurrence time of predecessor event i,
Tje=Earliest occurrence time of successor event j,
Tjl = Latest occurrence time of successor event j
ET = Earliest start time of an activity ij,
LT =Earliest finish time of an activity ij,
Tijl Start=Latest start time of an Til activity ij,
Tijl Finish t = Latest finish time of an activity ij,
Tij = Duration time of activity ij,

Earliest and Latest occurrence time of an event
Tje = maximum (Tje + Tij), calculate all Tje for jth event, select maximum value.
Til = minimum (Tjl − Tij), calculate all Til for ith event, select minimum value.
ET = Tie

LT= Tie + Tij ,
ET = Tjl,
ET = Tjl − Tij ,
TSij = The neutrosophic fuzzy total float of the activity i-j.

An abstract diagram is given in Figure 1, which shows that the Neutrosophic CPM/PERT for better understand.
The activities are considered as triangular Neutrosophic number.

Fig. 1. Conceptual diagram for Neutrosophic CPM.
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4|Solution Techniques for Neutrosophic CPM/PERT
There are two technique proposed to solve the Neutrosophic CPM/PERT. These techniques are used for finding
the CPM/PERT problem under Neutrosophic environment.

4.1|Solution Technique 1
Forward Pass Calculation

(1) Choose the risk factor δ ∈ [0, 1]

(2) Calculate the possibility activity during by using possibility mean function.

(3) The computation begins from the start node and move towards the end node. For easiness, the forward
pass computation starts by assuming the earliest occurrence time of zero for the initial project event.

(4) Earliest starting time of activity (i, j) is the earliest event time of the tail end event i.e. (Es)ij = Ei

(5) Earliest finish time of activity (i, j) is the earliest starting time + the activity time i.e (Ef)ij = (Es)ij+Tij

or (Ef)ij = Ei + Tij

(6) Earliest event time for event j is the maximum of the earliest finish times of all activities ending in to
that event i.e Ej = max[(Ef)ij for all immediate predecessor of (i, j)] or Ej = max[Ei + Tij ]

Backward Pass Calculation

(1) Choose the risk factor δ ∈ [0, 1].

(2) Calculate the possibility activity duration by using possibility mean function.

(3) For ending event assume E=L Remember that all E’s have been computed by forward pass computations.

(4) Latest finish time for activity (i,j) is equal to the j i.e. (Lf)ij = Lj

(5) Latest starting time of activity (i, j) = the latest completion time of (i, j) - the activity time or
(Ls)ij = (Lf)ij − Tijor(Ls)ij = Lj − Tij

(6) Latest event time for ’i’ is the minimum of the latest start time of all activities originating from that
event i.e. Li = min[(Ls)ijforallimmediatesuccessorof(i, j)] = min[(Lf)ij − Tij] = min[Lj − Tij ]

4.2|Solution Technique 2
Forward Pass Calculation

(1) Construct the fuzzy project network using Neutrosophic numbers as activity durations and assign event
numbers accordingly.

(2) Represent each Neutrosophic activity duration in Neutrosophic Triangular Number.

(3) Assume that the Neutrosophic earliest starting time of the initial event is zero, i.e.,

EST1 = ⟨0, 0, 0; 1, 0⟩.

(4) Compute the earliest start time for each event using:

ESTj = max{ESTi ⊕ Tij | i ∈ NP (j), j ̸= 1}, j = 2, 3, . . . , n,

where NP (j) represents the set of all predecessor nodes of event j.

(5) Using the ranking function equation (??), Select the maximum value of ESTj .

(6) Compute the Neutrosophic earliest finish time for each activity using:

EFTj = ESTj ⊕ Tij.
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Backward Pass Calculation Forward Pass Calculation

(1) Calculate fuzzy project network having Neutrosophic Fuzzy numbers as activity duration and numbering
the events.

(2) Represent each Neutrosophic fuzzy activity duration into Triangular Neutrosphic Number.

(3) Assume that Neutrosophic fuzzy earliest starting time of initial event is zero, i.e., ETJ = ⟨0, 0, 0; 1, 0, 0⟩
for j=1.

(4) Compute the earliest start for each events by using

ETj = max ETj

⊕
Tij , forj ̸= 1, j = 2, 3, ....n.

(5) By using the possibility mean function, Select the maximum value of ETj .

(6) Neutrosophic fuzzy earliest finish time for each activity is

ETj = (ETj

⊕
Tij).

Backward Pass Calculation

(1) Assume LTn = ETn, since Neutrosophic fuzzy latest finish of all the end activities are taken as the
earliest completion of the project network, LTJ , j = n−1, n−2, · · · , 2, 1 by using LTj = minJ LTJ − TIJ

(2) By using the ranking function equation(3.6), choose the maximum value of LTj

(3) Neutrosophic fuzzy latest start time for each activity is LTij = (LTj − Tij)

(4) Calculate total float TFij = min(LTij − (ETij

⊕
Tij))

(5) The neutrosophic fuzzy activity is said to be a critical activity if and only if its total TFij = 0. Critical
path is the longest path from initial event to terminal event in project network having maximum duration.
All activities in a critical path are called critical activities.

The critical path is the longest path from the initial event to the terminal event in the project network, having
the maximum duration. All activities in a critical path are called critical activities.

5|Numerical Examples
A relevant project case can validate and illustrate the computational process of Neutrosophic critical path
analysis. The project activities are denoted by Neutrosophic number representations, with sequencing done by
performing the forward and backward pass, along with Neutrosophic arithmetic operations and possibility mean
functions. This is a plausible approach to uncertainty for a project schedule as it offers a more flexible and
realistic specification of project constraints than using deterministic processes.

Suppose there is a project network with the set of node N={1, 2, 3, 4, 5, 6,7} the neutrosophic fuzzy activity
time for each activity as shown in Table 1. The study highlights the use of Neutrosophic Critical Path
Analysis (Neu-CPA) to handle uncertainty in project scheduling. Two different approaches were used to assess
the project network as shown in Figure 2, in which activity durations are triangular neutrosophic numbers
(TNNs). Technique 1 replaced neutrosophic durations with "crisp" values using a possibility mean function,
while technique 2 preserved the neutrosophic format for computations.

Technique 1:
For δ = 0,

(1) To calculate the earliest start time:
set E1 = 0
E2 = E1

⊕
t12 = 3.60

E3 = E1
⊕
t13 = 2.49

E4 = max{E2
⊕
T24, E3

⊕
T34} = 6.46
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Table 1. The fuzzy activity time for each activity in the project network shown as figure.

Activity Immediate Predecessors Activity Time Duration
1 → 2 − ⟨3, 4, 5, 0.5, 0.4, 0.2⟩
1 → 3 − ⟨2, 3, 4, 0.6, 0.5, 0.3⟩
2 → 4 A ⟨1, 4, 5, 0.4, 0.5, 0.6⟩
3 → 4 B ⟨4, 5, 6, 0.3, 0.4, 0.5⟩
3 → 5 B ⟨7, 8, 9, 0.7, 0.8, 0.9⟩
3 → 6 B ⟨5, 6, 7, 0.1, 0.7, 0.8⟩
4 → 7 C,D ⟨2, 4, 6, 0.8, 0.6, 0.1⟩
5 → 7 E, I ⟨3, 5, 8, 0.5, 0.6, 0.9⟩
6 → 5 F ⟨3, 6, 7, 0.4, 0.3, 0.1⟩
6 → 7 F ⟨4, 7, 9, 0.7, 0.6, 0.2⟩

Fig. 2. Critical path analysis.

E5 = max{E3
⊕
T35, E6

⊕
T65} = 10.21

E6 = E3
⊕
t36 = 5.1

E7 = max{E4
⊕
T47, E5

⊕
T57, E6

⊕
T67} = 12.39

(2) To calculate the latest Finish time:
L7 = 12.39
L5 = L7 − t57 = 10.21
L6 = min{L7 − t67, L5 − t65} = 5.1
L4 = L7 − t47 = 9.13
L3 = min{L4 − t34, L5 − t35, L6 − t36} = 2.49
L2 = L4 − t24 = 6.74
L1 = min{L2 − t12, L3 − t13} = 0
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Similarly, for other value of the risk factor δ ∈ [0, 1], The corresponding crisp value is calculated in Table 2. For
the value of δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 the critical path remain same i.e., 1 → 3 → 6 → 5 → 7 but the value
of δ = 0.7, 0.8, 0.9, 1 the critical path changed i.e., 1 → 3 → 5 → 7. So the changed critical path shown in the
below Figure 3 and 4. For δ = 0, we generated the earliest start (ES) and latest finish (LF) times, revealing the

Table 2. The crisp value of the Nutrosophic activity time duration.
Activity δ=0 δ=0.1 δ =0.2 δ=0.3 δ=0.4 δ=0.5 δ=0.6 δ=0.7 δ=0.8 δ=0.9 δ=1

t12 3.6 3.34 3.08 2.82 2.56 2.3 2.04 1.78 1.52 1.26 1
t13 2.49 2.349 2.208 2.067 1.926 1.785 1.644 1.503 1.362 1.221 1.08
t24 2.3983 2.2172 2.036 1.8548 1.6737 1.4925 1.3113 1.1302 0.949 0.7678 0.5867
t34 3.975 3.6225 3.27 2.9175 2.565 2.2125 1.86 1.5075 1.155 0.8025 0.45
t35 2.2 2.372 2.544 2.716 2.888 3.06 3.232 3.404 3.576 3.748 3.92
t36 2.61 2.355 2.1 1.845 1.59 1.335 1.08 0.825 0.57 0.315 0.06
t47 3.26 3.19 3.12 3.05 2.98 2.91 2.84 2.77 2.7 2.63 2.56
t57 2.1858 2.0964 2.007 1.9176 1.8282 1.7388 1.6493 1.559 1.4705 1.3811 1.2917
t65 5.1167 4.6957 4.2747 3.8537 3.4327 3.0117 2.5907 2.1697 1.7487 1.3277 0.9067
t67 5.3667 5.1648 4.963 4.7612 4.5593 4.3575 4.1557 3.9538 3.752 3.5502 3.3483

critical path as 1 → 3 → 6 → 5 → 7 with an overall project duration of 12.39 units. The critical path did not
change as we increased the risk factor δ from 0 to 0.6, but the duration of the project decreased (Table 2). For
δ ≥ 0.7, however, the critical path changed to 1 → 3 → 5 → 7 (Figures 3 and 4) demonstrating how increasing
uncertainty changes the activities that act as bottlenecks of performance on the project.

Technique 2

(1) To calculate the triangular neutrosophic earliest start activity time
Set as E1 = ⟨0, 0, 0, 1, 0, 0⟩
E2 = E1

⊕
t12 = ⟨3, 4, 5, 0.5, 0.4, 0.2⟩

E3 = E1
⊕
t13 = ⟨2, 3, 4, 0.6, 0.5, 0.3

E4 = max{E2
⊕
T24, E3

⊕
T34} = ⟨6, 8, 10, 0.3, 0.5, 0.5⟩

E5 = max{E3
⊕
T35, E6

⊕
T65} = ⟨10, 15, 18, 0.1, 0.7, 0.8⟩

E6 = E3
⊕
t36 = ⟨7, 9, 11, 0.1, 0.7, 0.8⟩

E7 = max{E4
⊕
T47, E5

⊕
T57, E6

⊕
T67} = ⟨8, 12, 16, 0.3, 0.6, 0.5⟩

(2) To calculate the latest Finish time:
Set as L7 = E7 = ⟨8, 12, 16, 0.3, 0.6, 0.5⟩
L5 = L7 − t57 = ⟨5, 7, 8, 0.3, 0.6, 0.9⟩
L6 = min{L7 − t67, L5 − t65} = ⟨4, 5, 7, 0.3, 0.6, 0.5⟩
L4 = L7 − t47 = ⟨6, 8, 10, 0.3, 0.6, 0.5⟩
L3 = min{L4 − t34, L5 − t35, L6 − t36} = ⟨−2,−1,−1, 0.3, 0.8, 0.9⟩
L2 = L4 − t24 = ⟨5, 4, 5, 0.3, 0.6, 0.6⟩
L1 = min{L2 − t12, L3 − t13} = ⟨2, 0, 0, 0.3, 0.6, 0.6⟩

For different value of the risk factor δ ∈ [0, 1] are calculated in Table 3.

This method kept the neutrosophic structure in calculating ES and LF in TNN form. The results (Table 3)
showed that project duration varied significantly with δ, with the mean value of the possibilities decreasing with
increasing uncertainty. Technique 1 informed not only better outcomes but also represented uncertainty in a
more nuanced manner by preserving its truth, indeterminacy, and falsity membership degrees.

Table 4 and Figure 5 compare both techniques, and show how Technique 1 results are to have a relatively longer
project durations than Technique 2 due to the crisp conversion. However, Technique 2 allows a more realistic
and flexible evolution assessment under uncertainty (i.e., risk sensitivity). The change of critical paths at δ = 0.7
provides further insight to project scheduling related to the importance of risk sensitivity.

This study confirms NCPA’s utility for managing uncertainty in projects. If we could look at both Technique
1 and Technique 2 at the same time, we could be using Technique 1 for the simplicity of the computational
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Table 3. Possibility mean value of the ET and LT.
Activity δ=0 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5 δ=0.6 δ=0.7 δ=0.8 δ=0.9 δ=1

E4 M1 5.1783 4.7832 4.388 3.9928 3.5977 3.2025 2.807347 2.412184 2.017021 1.621858 1.226695
M2 6 5.472 4.944 4.416 3.888 3.36 2.832 2.304 1.776 1.248 0.72

E5 M1 3.025 3.1185 3.212 3.3055 3.399 3.4925 3.586 3.6795 3.773 3.8665 3.96
M2 6.2967 5.6817 5.0667 4.4517 3.8367 3.2217 2.6067 1.9917 1.3767 0.7617 0.1467

E7
M1 8.34 7.614 6.888 6.162 5.436 4.71 3.984 3.258 2.532 1.806 1.08
M2 6.8458 6.1771 5.5083 4.8396 4.1708 3.5021 2.83334 2.164594 1.495849 0.827103 0.158357
M3 6.9083 6.2373 5.5663 4.8953 4.2243 3.5533 2.8823 2.2113 1.5403 0.8693 0.1983

L6 M1 3.6658 3.3457 3.0257 2.7056 2.3855 2.0654 1.745347 1.42527 1.105192 0.785115 0.465038
M2 0.5258 0.4838 0.4417 0.3996 0.3575 0.3154 0.273333 0.231248 0.189162 0.147076 0.10499

L3
M1 2.085 1.9035 1.722 1.5405 1.359 1.1775 0.996 0.8145 0.633 0.4515 0.27
M2 -0.3458 -0.3217 -0.2977 -0.2736 -0.2495 -0.2495 -0.2013 -0.1773 -0.1532 -0.1291 -0.105
M3 -0.2583 -0.2333 -0.02083 -0.1833 -0.1583 -0.1583 -0.1083 -0.0833 -0.583 -0.0333 -0.0083

L1 M1 0.3467 0.315 0.2833 0.2517 0.22 0.22 0.1567 0.125 0.933 0.0617 0.03
M2 -1.1708 -1.0912 -1.0117 -0.9321 -0.8525 -0.8525 -0.6933 -0.6138 -0.5342 -0.4546 -0.375

Fig. 3. Critical path when δ ∈ [0, 0.6].

aspects, while taking advantage of Technique 2 to represent more of the uncertainty. The authors reinforce the
need for risk-adjusted scheduling, since critical paths depend on the level of uncertainty.

6|Conclusion and Future Directions
The study presents Neutrosophic Critical Path Analysis (Neu-CPA) as a successful and effective way to manage
uncertainty in project scheduling. The results clearly point out that traditional deterministic ways of completing
project schedule research may not capture the complexities of real life. The results in this study clearly show
that the critical path in fact changes at higher risk levels (δ ≥ 0.7) and in this context, it provides a better
understanding of the need for flexible scheduling under a state of uncertainty. Adopting Technique 1 had the
advantage of crisp estimates, while Technique 2 synthesizes the neutrosophic structure to consider indeterminacy
within the network under analysis. Despite providing a rich contribution to project scheduling under uncertainty,
the study should be mindful of its limitations: (1) reliance on triangular neutrosophic numbers already defined
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Fig. 4. Critical path when δ ∈ [0.7, 1].

Table 4. Critical path analysis using technique 1 and technique 2.

Risk Factor (δ) Technique 1 Technique 2
0 12.4025 8.58583333333334

0.1 11.4961 7.74708333333334
0.2 10.5897 6.90833333333334
0.3 9.6833 6.06958333333333
0.4 8.7769 5.23083333333334
0.5 7.8705 4.39208333333334
0.6 6.964 3.55333333333333
0.7 6.466 4.17041666666667
0.8 6.4085 4.1275
0.9 6.3501 4.08458333333333
1 6.2917 4.04166666666667

Fig. 5. Comparision of project completion duration in technique 1 and
technique 2 with different risk factor.

in an earlier section may not reflect all real state characteristics, (2) as network sizes grow, it can be as so
cited here as complex , and (3) the provided risk factor (δ) would operate linearly when possibly real-world
uncertainty may truly be nonlinear. Areas for future research should look to develop hybrid models that integrate
neutrosophic logic with machine learning to report on a dynamic risk assessment level, possibly assess trapezoidal
neutrosophic sets for varying degrees of uncertainty, and find optimization algorithms for reducing processing
load. Ultimately, it could be useful to integrate data that projects have produced through an Internet of Things
enabled project management system, for example, to develop a scheduling process that incorporates adaptivity
into the scheduling process. Together, these steps can make NCPA a scalable approach to new types of project
scheduling and uncertainties when working with dynamic and large-scale projects. Within this articulated, future
research seeks to fully explore the gap between theoretical disciplinary frameworks and practice.
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