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The current work reveals the fine-tuning between stability zones and randomness of the GI/M/1 Pointwise Stationary 

Fluid Flow Approximation (PSFFA) model of the nonstationary D/M/1 queueing system. More specifically, this 

provides more insights into developing a contemporary PSFFA theory that unifies nonstationary queueing theory 

with chaos theory and fields in theoretical physics and chaotic systems. This opens new grounds for stability analysis 

of nonstationary queueing systems. A notable application of the GI/M/1 queueing model to achieve ultra-low latency 

of autonomous driving service is highlighted. Concluding remarks are given on future avenues of research. 

Keywords: State variable, Mean arrival rate, Time, Time-dependent root parameter, PSFFA, Ultra-low latency, 
Autonomous driving service. 

1|Introduction    

Day-to-day queues include customers' time-varying arrival processes, which are interpreted by their variance-

based nature based on the time of day. Factors like failure of network resources or nonstationary input loads 

can cause this. These bursty and nonstationary traffic in character networks as communication networks 

become more complicated with fluctuating data speeds and quality of service needs. Queuing theory deals 

with analyzing and understanding waiting times in various scenarios, such as waiting for service in banks or 

supermarkets, waiting for a response from computers, waiting for failures to occur, or waiting for public 

transport. 
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  Simulation techniques in the context of queueing systems involve tracking the system's behaviour through 

repeated simulation execution and averaging relevant quantities over different runs at specific time points. 

Collecting data at various time instants allows the system's Behavior to be evaluated over time [1]. 

In analytical transient investigations, transform techniques are commonly employed to solve 

differential/difference equation models that arise from an embedded Markov process/chain. These 

techniques help analyze the system's behaviour over time by transforming the equations into a more 

manageable form, facilitating the study of transient phenomena in queueing systems. 

This paper's road map is as follows: PSFFA theory is overviewed in Section 2. Section 3 discusses the GI/M/1 

Queueing Model in more detail. Section 4 reveals ρ- threshold of  the nonstationary D/M/1 queue's GI/M/1 

PSFFA model of the. Section 5 presents typical numerical experiments to evidence the derived analytic results 

against the numerical portraits. A notable application of the GI/M/1 queueing model to achieve ultra-low 

latency of autonomous driving service is highlighted in Section 6. Closing remarks combined with the next 

research phase are highlighted in Section 7. 

2|PSFFA 

The Pointwise of Stationary Fluid Flow Approximation Model (PSFFA) is a simulation technique that uses a 

single non-linear differential equation to estimate the queue's average number of users. An equation's form 

based on steady-state queueing relationships is obtained by this revolutionary approach to provide advantages 

in terms of generality, simplicity, and computational efficiency. Moreover, these methods have potential 

applications in developing dynamic network control mechanisms [1]. 

Think about a queueing system for a single server with a nonstationary arrival process. μ(t) and λ(t) serve as 

the time-dependent average queue service and arrival rates, respectively. The system's ensemble average time-

dependent state variable is referred to as  x(t), x.(t) =  
dx(t)

dt
. Define fin(t) and fout(t) respectively, to be the 

system's time-dependent flow into and out. Notably, x.(t), fin(t) and fout(t) are related by 

Consequently,  

 

Here ρ(t) defines the underlying queue's server utilization. For an infinite queue, waiting space is infinite,   

Eq. (1)'s fluid flow model becomes 

Setting x .(t) = 0, implies 

Additionally, we assume the numerical invertibility of G1(ρ) , namely  

Equationally, PSFFA rewrites to: 

Notably, Eq. (7) is extremely general since the closed-form representation of G1can be computed for many 

queues. However, we can numerically or by data of an existing system's fitting  curve calculate G1. 

x.(t) = −fout(t) + fin(t). (1) 

fout(t) =  μ(t)ρ(t). (2) 

fin(t) =  λ(t).    (3) 

x.(t) = −μ(t)ρ(t) + λ(t), 1 > ρ(t) =
λ(t) 

μ(t)
> 0.          (4) 

x =  G1(ρ).          (5) 

ρ =  G1
−1(x). (6) 

x.(t) = −μ(t) (G1
−1(x(t))) + λ(t). (7) 
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3|The 𝐆𝐈/𝐌/ 𝟏 Queueing Model 

This section discusses the GI/M/1 queueing model, in which the service time has an exponential distribution, 

and the inter-arrival process has an identical distribution with successive inter-arrival periods. Let A(t) stand 

for the distribution of inter-arrival times. The GI/M/1 queue's steady state probability for the number of 

customers a new arrival finds in the system is a geometric distribution 

σ(1 > σ > 0) uniquely solves: 

where fa
∗(s) is the Laplace-Stieltjes transform of the inter-arrival time distribution A(t), that is 

Notably, σ = 1 solves Eq. (11), and the state variable, x, reads as 

In determining the PSFFA model, Eq. (13) rewrites to  

We believe that the nonstationary load will exhibit sinusoidal mean behaviour, which will describe the cyclic 

load pattern over a specified time period (for example, day) in accordance with the prior research on 

nonstationary analysis of communication networks [2-6], namely λ(t) = A + Bsin(wt + D), for more details 

see [7-9].  

Thus, the required model reads as 

We can numerically solve Eq. (15) to visualize the queue's time-varying behaviour.  

Depending on the inter-arrival distribution A(t), the precise process for figuring out will vary, although it 

usually involves a root-finding approach like Laguerre's method. The time-varying D/M/1 queue's GI/M/1 

PSFFA model reads 

The D/M/1 case in Eq. (16) corresponds to a deterministic arrival process where the inter-arrival distribution 

A(t) is a delta function (i.e., dA(t) = fa(t)dt and fa(t) =  δ(t −
1

λ
) ). 

Mastering the increase ability (decrease ability) for a function, f(x), a shorthand note reads: 

We can visualize Fig. 1 (c.f., [10]) in a more tangible form. 

πn = (1 − σ)σn. (10) 

σ = fa
∗(s)|s=μ(1−σ), (11) 

fa
∗(s) = ℒ∗(A(t)) = ∫ e−st

∞

0

dA(t). (12) 

x =  
λ

μ(1 − σ)
=

ρ

(1 − σ)
. (13) 

ρ(t) = x(t)μ(1 − σ(t)). (14) 

x.(t) = μx(t)(1 − σ(t)) + λ(t). (15) 

x.(t) = −μx(t)(1 − σ(t)) + λ(t), σ(t) = e
(σ(t)−1)

ρ(t) .         (16) 

ρ(t) = time − dependent server utilization =
λ(t)

μ
.  

f ′ > 0 ⟺ f ↑.  

f ′ < 0 ⟺ f ↓.  
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Fig. 1. Increasing/decreasing test.  

4|The 𝛒 −Theshold Theory of the Non-stationary the D/M/1 Queue 

GI/M/1 PSFFA model. 

Theorem 1. The time-dependent server utilization, ρ(t) (c.f., Eq. (16)), is forever increasing in 

σ(t)(σ(t) ∈ (0,1)). 

Proof. Let the time-dependent root parameter, σ(t) be such that  1 > σ(t) > 0. By Eq. (16), it follows that: 

We have 

Following mathematical analysis (c.f., [11]),   

The result of communicating Eq. (18) and Eq. (19) is as follows: We can see that 

and 

ρ(t) =
λ(t)

μ
=

(σ(t) − 1)

ln(σ(t))
. (17) 

∂ρ

∂σ
=

lnσ − 1 +
1
σ

(lnσ)2
. (18) 

1 −
1

σ
< lnσ <  σ − 1      (19) 

limσ(t)→1ρ(t) = limσ(t)→1
(σ(t)−1)

ln(σ(t))
= limσ(t)→1

1
1

(σ(t))

= 1.  (L’Hopital’s rule) (20) 

limσ(t)→∞ρ(t) = limσ(t)→∞
(σ(t)−1)

ln(σ(t))
= limσ(t)→∞

1
1

(σ(t))

 = ∞.  (L'Hopital's rule) (21) 
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5|Typical Numerical Experiments 

Fig. 2. Stability and approachability to high traffic intensity zone. 

R code for Fig. 2 

sigma <-c(0.1, 0.2, 0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1) 

rho (-c(0.3908650337, 0.4970679476, 0.5814084816, 0.6548140008, 0.7213475204, 07830460756, 

0.8411019756, 0.8962840235, 0.9491221581, 0.9747862873, 0.99499162471, 1) 

plot (sigma, rho 

type="1" 

col="red" 

xlab=expression(paste("Time-dependent root parameter," ,sigma(t))), 

ylab-expression (rho (t)), 

main="Stability and Approachability to High Traffic Intensity Zone", 

cex.lab=1.2, 

cex.axis=1.2 

) 

 Fig. 3. Beyond high traffic intensity zone. 

 

R code for Fig. 3 

Sigma <-c(1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 1000) 
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  rho <-c(1.049205869, 1.09696299, 1.143448406, 1.188805365, 1.233151731, 1.276585887, 1.319190975, 

1.361038022, 1.402188285, 1.442695041, 1.820478453, 2.164042561, 2.485339738, 3.908650337, 

6.342355813, 8.52640901, 10.5723162, 12.52548871, 21.49757685, 144.6200625) 

plot (sigma, rho, 

type="1", 

col="blue", 

xlab=expression(paste("Time-dependent root parameter,", sigma(t))), 

ylab=expression( rho(t)), 

main="Beyond High Traffic Intensity Zone" 

lwd=1.2, 

cex.lab=1.2, 

cex.axis-12 

) 

It is observed from Fig. 2 and Fig. 3 that the time-dependent root parameter, σ(t) has a significant impact on 

the underlying queue's stability by directly impacting the time-dependent server utilization, ρ(t). Touching 

upon stability, it can be seen that σ(t) acts as a cutting-edge fine tuning to either approaching a high traffic 

intensity zone, corresponding to ρ(t) = 1. 

Moreover, the progressive increase of σ(t), will steer the whole system into a randomness zone corresponding 

to ρ(t) > 1. 

It can be easily verified that the numerical setup validates the obtained analytic results of Theorem 1.                                                                    

6|𝐆𝐈/𝐌/𝟏 - Based Ultra-low Latency of Autonomous Driving Service 

The investigation on how 5G networks are anticipated to accommodate different network services with 

varying performance criteria, such as high-rate traffic, low latency, and high reliability, was conducted by the 

authors of [12]. New technologies, including Network Functions Virtualization (NFV), network slicing, and 

Software-Defined Networking (SDN), are being implemented to satisfy these expectations. By combining 

fog, edge, and cloud computing with network slicing to map autonomous driving functionalities into service 

slices, these technologies will help build a distributed and scalable SDN core network architecture that will 

ultimately improve transmission efficiency and meet low latency constraints. The goal is to improve the quality 

of service for autonomous driving applications. 

The global system manager in an autonomous driving system [12] plays a crucial role by overseeing three 

main functions: driving mode management, which includes manual, run, and pause modes; fault management 

system, which monitors module statuses for safe driving; and emergency response to system faults or operator 

interventions to ensure the safety and efficiency of the autonomous vehicle operations. These functions are 

essential for maintaining the operational integrity and safety of the autonomous driving system by managing 

driving modes, monitoring module statuses, and responding to emergencies effectively. Moreover, this 

describes a 5G-enabled scalable SDN core network architecture for autonomous driving systems [12], 

emphasizing the importance of ultra-low latency and high reliability. It introduces the concept of a global 

system management service implemented as a service slice to meet the stringent requirements of autonomous 

driving modes, ensuring efficient operation and safety through features like fail-safe mechanisms and human-

machine interfaces displaying critical vehicle information, as shown in Fig. 4 (c.f., [12]). 
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Fig. 4. A 5G-enabled scalable SDN core network architecture for autonomous driving systems. 

Accordingly, the authors [12] provided a simulation-based assessment of their system with a particular 

emphasis on SliceScal and the 5G slicing model for driverless vehicles. They evaluate the system's 

performance in a realistic urban setting using the network simulator NS-3, the cars traffic simulator Veins-

SUMO, and the OpenFlow SDN controller, considering vehicle dispersion, radio propagation, and latency 

management in autonomous driving resource slicing. The evaluation platform and algorithm developed aim 

to optimize resource allocation and latency handling for autonomous driving services in a dynamic urban 

environment. 

Fig. 5 (c.f., [12]) offers a visual description for handling the latency of autonomous vehicle service requests in 

different scenarios involving service slicing and a slice management algorithm. It shows that as Autonomous 

Vehicle (AV) density increases, the handling latency also increases. Service slicing reduces the handling latency 

by 60%, and the SliceMan algorithm further reduces it by 90% compared to scenarios without service slicing, 

demonstrating the effectiveness of managing resources for service slices in improving latency.  

a.                                                           b.                                                        c. 

Fig. 5. A visual description for handling the latency of autonomous vehicle service requests; a. with 

service slicing, b. with service slicing, c. with sliceman algorithm. 
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   7|Conclusion  

An exposition is undertaken to reveal the threshold theory of the time-dependent server utilization of the  

D/M/1 queueing system's GI/M/1 PSFFA closed-form expression. Moreover, some numerical experiments 

are provided to validate the analytic results. The influential impact of the GI/M/1 queueing model on ultra-

low latency of autonomous driving service is investigated. Future work involves further investigation of 

similar threshold theorems of the G/M/1 PSFFA model of the nonstationary Ek/M/1 and IPP/M/1 queueing 

systems. 
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