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1|Introduction    

According to McCarthy and Hayes [1], a situation is "the complete state of the universe at an instance of 

time". In situation calculus, describing a dynamic domain involves determining the actions agents can take 

and the fluents needed to represent the changes that occur in the environment. Fluents are properties of the 

world that may vary throughout time. They are expressed as predicates, and their truth value depends on the 

context. For example, at (robot, location) might represent the location of a robot. Actions are atomic 

operations that can alter the condition of the world. They are expressed as predicate words, with arguments 

corresponding to the entities participating in the action. For example, move (robot, location) may denote the 

activity of moving a robot to a specified area. Situations depict the status of the world at various moments in 
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Abstract 

Situation calculus is a logical language for expressing change. Situations, actions, and fluents are the three core ideas 

of situation calculus. As agents perform actions, the dynamic environment changes from one situation to another. 

Fluents are functions that change with the situation and describe the effects of actions. They can be seen as properties 

of the world that come into existence when an action is initiated and disappear when another action ends. While 

situation calculus is powerful, it often struggles with complexity and verbosity when modeling dynamic systems, 

making it challenging to manage and reason about in large-scale settings. We propose using Labelled Transition 

Systems (LTS) to address these limitations. The LTS model, based on graph models of modal logic, offers a more 

concise and formal representation of system behaviors. The LTS-based method aims to provide a simpler and more 

intuitive framework for modeling dynamic settings, thereby improving system representation clarity and efficiency. 

It allows for higher scalability and more efficient verification and validation processes, which are critical in complex 

systems. Finally, the LTS model seeks to bridge the theoretical expressiveness of situation calculus with the practical 

requirements of system design and analysis.  
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time. They are commonly written as terms with S0 describing the original situation and do (a, s) signifying 

the situation created by executing action a in situation s. 

In the simplest version of the situation calculus, each action is described by two axioms: 

I. The possibility axiom. The possibility axiom deals with the notion of whether an action is possible to execute 

in a given situation. This axiom specifies the conditions under which an action can be performed. 

II. The effect axiom. The effect axiom specifies how the state of the world changes after acting. It describes the 

transition from one situation to another as a result of executing an action. 

While situation calculus offers a formal and expressive basis for reasoning about actions and changes in 

dynamic environments, having found application in a wide variety of both theoretical and practical works [2–

10], its complexity, scalability concerns, and limits in dealing with uncertainty and constant change can present 

challenges in practical AI applications. Specifically, traditional situation calculus relies heavily on layered 

quantification and complex temporal reasoning. It can be time-consuming and inefficient when modeling and 

analyzing dynamic systems, particularly as their size and complexity grow. 

Moreover, the Labeled Transition System (LTS)-based approach facilitates modularity and scalability, allowing 

complex systems to be broken down into manageable components. This modular nature supports more 

straightforward integration and modification, enabling the analysis to scale effectively to larger systems 

without introducing ambiguity. The inherent alignment of LTS models with formal verification techniques, 

such as model checking, further ensures that properties like safety and liveness can be rigorously verified, 

providing confidence in the system's behavior under various conditions. 

In this paper, we propose an alternative formalism based on the LTS model to describe the basic axioms of 

situation calculus, which provides a powerful and versatile framework for modeling, analyzing, and reasoning 

about dynamic systems. Modal logic graph models inspire this model and offer clarity, formal rigor, and an 

intuitive graphical representation, making it easier for both humans and machines to reason. The following 

section provides a summary of the LTS model.  

2| LTS-Model 

LTSs are a fundamental concept in theoretical computer science and formal methods. They provide a 

mathematical framework for modeling and analyzing the behavior of concurrent and reactive systems. LTSs 

have been successfully applied in epistemic logic [11], providing a formal and intuitive framework for 

representing and analyzing the knowledge and beliefs of agents as they evolve through actions and 

observations. They have also been effectively studied in model checking [12], [13]. In model checking, LTSs 

are used to depict the behavior of a system as a collection of states and transitions. These transitions are 

labeled with actions or events that guide the system from one state to another. By capturing the system's 

structure and dynamics, LTSs offer a concise yet comprehensive model for reasoning about system behavior. 

Let Act be the universal set of observable actions, and let τ denote a local action that is unobservable to a 

component's environment. An LTS M is a quadruple 〈𝒬, 𝒜, δ, 𝓆0〉 where [14]: 

I. 𝒬 is a finite set of states. 

II. 𝒜 ⊆ Act is the communicating alphabet of M. 

III. δ ⊆  𝒬 ×  𝒜 ∪ {τ} ×  𝒬 is a labeled transition relation. 

IV. 𝓆0 ∈  𝒬 is the initial state. 

This paper extends the classical notion of an LTS by integrating concepts from modal logic [15]. In this vein, 

we define the next components [16]: 

A proposition, p. A truth function, tr(p, qi), associates the truth value, ti, of p in each state, qi, where ti=Tr(p, 

qi). If p is a crisp proposition, ti can be either true (1) or false (0).  
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  A target set, T(p), is a collection of "target states." A target state, qj, is one in which tj equals 1. Thus, T(p) 

represents the set of all states in which p is true. p defines the target set, or T(p). If qj is the target state, it 

fulfills T(p). Thus, T(p) ={qj|tr(p, qj) =1} (Fig. 1). 

Fig. 1. Target set and target states. 

Definition 1 ([16]). Each state, qi, is connected with the set of all states, R(qi), that are accessible from qi. 

R(qi) is known as the reachable set of qi. Specifically, R(qi) ={qj|qj is accessible from qi} (Fig. 2). 

Fig. 2. Reachable set. 

Definition 2 ([16]). p is possible in state qi, abbreviated as possible p/qi, if the intersection of R(qi) and T(p) 

is not empty, that is, if there is a target state in T(p) that can be reached from qi. 

3|Axioms of Situation Calculus Using LTS-Model   

3.1|Possibility Axiom 

The possibility axiom relates the existence of transitions labeled with actions to the possibility of performing 

those actions in the given states. In the context of modal logic, we can now redefine the possibility axiom 

used in situation calculus (Section 1) as follows: 

Axiom 1. For a given proposition p and its associated truth function tr(p, qi), where qi represents a state in 

the system 
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where poss(a, q) denotes the possibility of action a in state q. 

T(p) represents the target set associated with proposition p, consisting of all states where p is true. 

tr (a, qj) represents the truth value of action a in state qj. 

The axiom asserts that action a is possible in state q if and only if there exists a target state qj where action 

a is true according to the truth function associated with p. 

Alternatively, using definitions 1 and 2 from Section 2, we can reformulate the possibility axiom: 

Axiom 2. For a given proposition p and its associated target set T(p), and a state qi in the system 

where poss(p, qi) denotes the possibility of proposition p in state qi. 

R(qi) represents the set of all states reachable from state qi. 

T(p) represents the target set associated with proposition p, consisting of all states where p holds. 

Now, the axiom states that proposition p is conceivable in state qi if at least one state in R(qi) is also in T(p).  

Example 1. To illustrate the expressiveness of our method, consider the following simple example taken 

from the world of an agent, which states that it is possible to shoot if the agent is alive and has an arrow [17] 

In LTS, transitions are labeled with actions, and states represent possible configurations of the system. Here's 

the simplified expression utilizing Eq. (1) 

The reformulated phrase asserts that if the agent is alive and possesses an arrow in state q, there exists a 

transition q → qj in the set of possible transitions from state q, with the label indicating the possibility of 

shooting (tr(Shoot,qj)=1).  

The careful reader should notice that the if statement qj∈T(q): tr(Shoot,qj)=1 of the above expression is 

equal with the respective statement R(q) ∩ T(Shoot) ≠ ∅ as used in Eq. (2) of our conceptual framework, 

emphasizing the multiple facets of our approach that strengthen its expressiveness.   

It is easy to see from the above that the LTS-model formulation, based on the possibility axiom, offers several 

advantages over classical situation calculus predicate logic. These benefits include conciseness, modularity, 

compatibility with formal techniques, reasoning efficiency, and simplicity of formalization. 

3.2|Effect Axiom 

According to the effect axiom in situation calculus (see also Section 1), the effect of an action in a given state 

occurs if at least one state results from the action's execution and can be reached from the starting state. 

Using the definitions used in our conceptual framework, we can define the aforementioned axiom as follows: 

Axiom 2: For a given action a and its associated effect set E(a), and a state qi in the system 

where Effect(a, qi) denotes the effect of action a in state qi. 

R(qi) represents the set of all states reachable from state qi. 

E(a) represents the effect set associated with action a, consisting of all states resulting from 

executing action a. 

Poss (a,q) ⟺ exists there qj∈T(p): tr (a,qj) =1, (1) 

Poss (p, qi) ⟺ R(qi)∩T(p) ≠ 0, (2) 

Alive(Agent, q) ∧ Have(Agent, Arrow, q) ⇒ poss(Shoot, q).    (3) 

Alive(q) ∧ Have(q, Arrow) ⟹exists there qj ∈ T(q): tr(Shoot, qj) = 1.    (4) 

Effect (a, qi) ⟺ exists there qj ∈ R(qi): qj ∈  E(a), (5) 
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  Our formulation of the effect axiom encapsulates the core of situation calculus's respective axiom, which 

states that the effect of an action in a given state occurs if there is at least one reachable state to which the 

action leads. 

At this point, a more careful examination of the effect set E(a) is needed. 

Definition 3. The effect set E(a) associated with an action is a collection of all states that occur from action 

a being performed from any state in the system. It can be defined as follows: 

where Q represents the set of all states in the system. 

R(qi, a) represents the set of all states reachable from state qi through the execution of action a. 

To put it simply, the effect set E(a) includes all potential states that might result from performing an action 

a from any state in the system. This concept defines the effect set E(a) as the potential changes in the system's 

state as a result of action a, while accounting for all possible beginning states q
i
.  

This idea encompasses the full spectrum of possible outcomes resulting from the execution of an action, 

regardless of the initial condition. In other words, if we imagine the system as a network of interconnected 

states, where each state represents a different configuration of the system and an action leads to transitions 

between these states, the effect set includes all the states that can be reached through the action from any 

given state. The effect set is crucial for analyzing and verifying dynamic systems because it thoroughly 

examines all potential state transitions caused by an action. 

Example 2. Now, let us consider an example taken from related literature [17] expressed within the terms of 

the effect axiom in situation calculus and then reformed within our framework to understand the advantages 

our approach offers. 

The relational Holding axiom states that an agent is holding some gold g after performing a possible action if 

and only if the action was a grab of g, or if the agent was already holding g and the action did not release it: 

Given our terminology (Eq. (5) and Eq. (6)), we can reformulate the above axiom: 

We can observe that Eq. (8) conveys the same meaning as Eq. (7) but more concisely and understandably. It 

allows for a more compact representation of actions and their effects, reducing the need for complex logical 

constructs and quantifiers. Thus, our approach offers advantages in modularity and clarity by separating action 

effects from the domain model. It also promotes ease of formalization and compatibility with formal 

methods, ultimately improving readability and scalability compared to traditional situation calculus 

expressions. 

4|Conclusion 

Based on predicate logic, situation calculus can be difficult to use when describing dynamic system behaviors 

because it relies on layered quantification and complex temporal reasoning. It leads to challenges in scaling 

and ambiguity when depicting actions and their outcomes. 

On the other hand, employing an LTS model within the situation calculus framework could offer several 

advantages. Firstly, the LTS model can provide a systematic and formal explanation of action sequences and 

their consequences, thereby improving the clarity and precision of reasoning about dynamic systems. 

E(a) = ⋃qi∈Q
 R(qi, a), (6) 

Poss(a, s) ⇒ (Holding(Agent, g, Result(a, s)) ⇔ a

= Grab(g) ∨ (Holding(Agent, g, s) ∧ a ≠ Release (g))). 
(7) 

Effect(a, Holding(Agent, g)) ⇔ exists there qj ∈ R(Holding(Agent, g)): qj ∈ E(a). (8) 
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Secondly, the LTS model allows for a straightforward examination of state transitions and action connections, 

making tasks like planning and verification easier within the situation calculus framework. 

Furthermore, LTS approaches naturally allow for modularity and scalability. LTS facilitates system integration 

and change by separating complex systems into manageable components and representing them as state-

transition diagrams. This modular approach enhances the ability to extend the analysis to larger systems while 

maintaining cohesion and clarity. 

In summary, integrating an LTS model into the situation calculus framework enhances the descriptive, 

manageable, and verifiable nature of dynamic system behaviors. This integration surpasses the constraints of 

classical situation calculus by offering a more understandable, scalable, and formal framework for analyzing 

actions and their outcomes. 
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