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Abstract 
 

 

 

 

 

 

   1|Introduction  

Minimum Cost Flow (MCF) problems serve as a pivotal concept within the broader scope of network flow 

problems. The fundamental objective of an MCF problem is to optimize the transportation of commodities 

across a capacitated network, ensuring the cost associated with this flow is minimized. This intricate task 

involves orchestrating the movement of goods from suppliers at certain nodes to meet the demands at other 

specified nodes. The applicability of MCF extends far beyond its immediate definition, influencing a myriad 

of network-related challenges. Notably, MCF finds relevance in diverse problem domains such as maximum 
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flow, assignment, shortest path determination, transportation logistics, transshipment quandaries, multi-stage 

production inventory planning, nurse scheduling, project assignment, mold allocation, college course 

assignment, and even the optimization of automobile routing [1]–[4]. A noteworthy contribution to the 

understanding and resolution of MCF problems comes from the work of Hu et al. [5]. They introduced an 

algorithm characterized by its adept handling of complementarity slackness at each iteration. Employing a 

dual approach, the algorithm updates node potentials iteratively, pinpointing augmenting paths and enhancing 

the efficiency of the solution-seeking process. 

This intricate dance of nodes, capacities, and costs within the framework of MCF not only addresses the 

immediate challenge of cost-effective commodity flow but also lays the groundwork for addressing a 

spectrum of interconnected network problems. As we delve deeper into this work, we'll explore not only the 

nuances of MCF but also its broader implications and the innovative approaches researchers are taking to 

tackle its complexities. The journey begins with a thorough exploration of the background and significance 

of MCF in the realm of optimization and decision-making. 

The exploration of multi-objective MCF problems has been a subject of significant inquiry within the 

academic landscape, as evidenced by the contributions of various scholars. Kumar and Kaur [6] and 

Hamacher et al. [7] stand among those who have delved into this intricate realm, paving the way for a deeper 

understanding of optimization challenges involving multiple objectives. 

Bazaraa et al. [8] made strides in applying parametric analysis, particularly in the context of large-scale linear 

programming. The study by Steuer [9] took a unique approach by decomposing the parametric space of 

convex combination parametric programming, offering insights through thorough parametric analysis. 

Luhandjula [10] contributed to the field by examining multi-objective linear problems with coefficients 

represented by possibilistic data, adding a layer of complexity to the understanding of these optimization 

challenges. 

The Multi-Objective Transportation Problem (MOTP) has also garnered attention from researchers. Lee and 

Moore [11] and Hemaida and Kwak [12] applied Goal Programming (GP) techniques to navigate the 

complexities of MOTP, seeking satisfactory solutions. However, Tamiz et al. [13] and Romero [14] critically 

discussed the limitations of GP, shedding light on areas where improvements and alternative approaches were 

needed. In pursuing robust solutions, many researchers turned to fuzzy programming approaches for solving 

MOTP. Li and La [15], Abd El-Wahed [16],Bit et al. [17], Chanas et al. [18], Ehrgott and Verma [19], Chalam 

[20] and Lai and Hwang [21] are among those who embraced the versatility of fuzzy programming, 

contributing to a growing body of knowledge in this domain. Adding a layer of novelty, Cui et al. [22] 

proposed a groundbreaking general MCF model. This model was designed not only to optimize the 

distribution pattern of evacuation flow and rescue flow on the same network but also to introduce the concept 

of conflict cost. This innovative approach extends the traditional understanding of MCF problems, addressing 

real-world scenarios with additional complexity.  

This paper introduces the multi-objective MCF problem, incorporating variables with possibilistic 

characteristics. The parametric investigation associated with the α-possibly optimal solution is outlined and 

established without the requirement for differentiability. 

The rest of the paper is outlined as follows. 
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Fig. 1. Layout of remaining paper. 

  2|Background 

This section introduces fundamental concepts and outcomes associated with possibilistic variables, including 

their α-level set, possibilistic distribution, and the supporting elements. 

Definition 1 ([23], [24]). A possibilistic variable, denoted as u on V, is a variable characterized by a possibility 

distribution μu(v).  This characterization implies that if u is a variable with values in V, then the associated 

μu corresponding to u can be conceptualized as a fuzzy constraint. The distribution is represented by a 

possibility distribution function μu: V ⟶ [0, 1]. For each v ∈ V, this function expresses the degree of 

compatibility of u with the realization v ∈ V. In the scenario where V is a Cartesian product of V1, V2, … , Vn, 

the n-ary possibility distribution is formulated as μu(v) = (μu1(v1), μu2(v2), … , μun(vn)). 

Definition 2. The α-level set of possibilistic variable u is 

                   

Definition 3 ([23]). A possibility distribution μu on V is said to be convex if 

Definition 4 ([23]). The support of a possibilistic variable u is 

3|Problem Statement and Solution Concepts 

Consider the following multi-objective MCF problem with a possibilistic framework, as introduced by Shih 

and Lee in 1999 (Poss MOMCF): 

uα = {v ∈ V: μu(v) ≥ α}.  

μu(γv
1 + (1 − γ)v2) ≥ min(μu(v

1), μu(v
2));  for all  v1,  v2 ∈ V, γ ∈ [0, 1].  

Supp (u) = {v ∈ V: sup
v∈Nδ(y)

μu(v) > 0; for all δ > 0}, where Nδ(y) = {v ∈ V ∈: ‖v − y‖ < δ}.  

min F̃r(x, c̃
r) = ∑ c̃ij

r

(i,j)∈M

xij , r = 1, 2, … , K,  
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Here, 

M: the set of arcs (i, j). 

V:  the set of nodes. 

xij: the decision variable representing the flow through the arc (i, j). 

Uij = [lij,  uij]: capacity of arc (i, j).  

c̃ij
r : the possibilistic penalty per unit of flow through the arc (i, j) in the c̃ij 

r  objective function r = 1, 2, … , K.  

b(i) denotes the net flow generated at node i, where positive, zero, or negative values classify node i as a 

supply node, transshipment node, or demand node, respectively. 

It is important to note that the parameters c̃ij
K are vectors of possibilistic variables on ℝ, characterized by 

possibility distributions μc̃ij
r . It is assumed that all possibility distributions in the Poss MOMCF problem are 

convex cones with compact supports, denoted as u0 = supp(u). 

Definition 5. x∗ ∈ G is an 𝛼 − possibly efficient solution for Poss MOMCF if there is no x ∈ G such that 

Based on the  extension principle, we have 

  

where 

                          

μc̃r,r = 1, 2, … , K are arcs K(i, j) possibly distributions. 

 4|Characterization of 𝛂-Possibly Efficient Solution for the Poss 

  MOMCF Problem 

For investigating the α −possibly efficient solutions for the Poss MOMCF problem, let us consider the α − 

parametric multi-objective MCF problem. 

 

 

Subject to  

x ∈ X = {
∑ xij

j: (i,j)∈M

− ∑ xli
k:(k,i)∈M

= b(i);             for all i ∈ V,

  xij ∈ Uij; for all (i, j) ∈ M, xij ≥ 0;    for all (i, j) ∈ M 

}. 

Poss (

F1(x, c̃
1) ≤  F1(x̂, c̃

1), F2(x, c̃
2) ≤  F2(x̂, c̃

2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

  Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1),… , FK(x, c̃
K) ≤  FK(x̂, c̃

K)

) ≥ α. (1) 

Poss (

F1(x, c̃
1) ≤  F1(x̂, c̃

1), F2(x, c̃
2) ≤  F2(x̂, c̃

2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

  Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1),… , FK(x, c̃
K) ≤  FK(x̂, c̃

K)

) 

= Sup
(c1, c2,…, cK)∈E

min(
μc̃1(c

1), μc̃2(c
2), … , μc̃r−1(c

r−1),

  μc̃r(c
r),   μc̃r+1(c

r+1),… , μc̃K(c
K) 
), 

(2) 

E = {

(c1,  c2, … ,  cK): F1(x, c̃
1) ≤  F1(x̂, c̃

1), F2(x, c̃
2) ≤  F2(x̂, c̃

2),

… , Fr−1(x, c̃
r−1) ≤  Fr−1(x̂, c̃

r−1), Fr(x, c̃
r) ≤  Fr(x̂, c̃

r),

 Fr+1(x, c̃
r+1) ≤  Fr+1(x̂, c̃

r+1),… , FK(x, c̃
K) ≤  FK(x̂, c̃

K) 

}, (3) 
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(α-PMOMCF)    

where, (c̃ij
r)
α
 is the α −cut of the possibilistic variable cij

r . Based on the convexity assumption μc̃ij
r (cij

r), (i, j) is 

arc, r = 1, K are real intervals denoted by [(cij
r−)

α
, (cij

r+)
α
 ]. Let φα

r  be the set of arcs (i, j) with cij
r ∈

[(cij
r−)

α
, (cij

r+)
α
 ] , r = 1, K. The α −PMOMCF problem can be rewritten as 

Problem (5) can be rewritten as 

Definition 6. x∗ ∈ G is an α −parametric efficient solution for α-PMOMCF  problem if there is no x ∈ G 

 and cr ∈ φα
r  such that Fr(x, c

r) ≤  Fr(x
∗, cr);  for all r = 1, K and Fr(x, c

r) <  Fr(x
∗, cr) holds for at least one r. 

Definition 7 ([25]). A feasible vector Y° ∈ X is said to be α −parametric compromise solution of  

α −PMOMCF if and only if  Y° ∈ H and F(Y) ≤ ⋀ F(Y)Y∈X , where ⋀ stands for the minimum, and H is the set 

of α − parametric efficient solutions. 

Definition 8 ([26]). When the α-parametric compromise solution aligns with the preferences of decision-

makers, it is termed an α-preferred parametric compromise solution. 

Theorem 1. x∗ ∈ G is an 𝛼 −possibly efficient solution for the Poss MOMCF problem if and only if 

α −parametric efficient solution for α-PMOMCF  problem. 

Proof: see [23]. 

 5|Fuzzy GP Approach for Solving Problem (5) 

Based on the three concepts of fuzzy goals (G), fuzzy constraints (C), and fuzzy decision (D) introduced by 

Bellman and Zadeh [27], the fuzzy decision is defined as 

Then, 

With the Membership Function (8), let us describe the fuzzy goals for the problem under study. The linear 

Membership Function (MP) [28] is given by 

min Fr(x, c
r) = ∑ cij

r

(i,j)∈M

xij , r = 1, 2, … , K, 

Subject to                                                                                                  

x ∈ X = {

∑ xij
j: (i,j)∈M

− ∑ xli
k:(k,i)∈M

= b(i);                                  for all i ∈ V,

  xij ∈ Uij; for all (i, j) ∈ M, xij ≥ 0; for all (i, j) ∈ M, cij
r ∈ (c̃ij

r)
α
  

}, 

(4) 

min Fr(x, c
r) = ∑ cij

r

(i,j)∈M

xij , r = 1, 2, … , K, 

Subject to   

x ∈ X, and cr ∈ φα
r , r = 1, K. 

(5) 

min Fr(x, c
r) = ∑ (cij

r−(τ) + τ

(i,j)∈M

cij
r−(τ))xij , r = 1, 2, … , K, 

Subject to   

x ∈ X, and cr ∈ φα
r , r = 1, K, τ ∈ [0,1]. 

(6) 

D = C ∩ G. (7) 

μD(x) = min(μC(x), μG(x)). (8) 
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where Lr, and Ur are the lower and upper bounds of Fr(x, c
r), Lr ≠ Ur, and can be calculated as 

By applying the Fuzzy Decision (8) and Membership Function (9), α −PMOMCF can be rewritten as 

Problem (11) can be converted into well-defined linear programming using the auxiliary variable ϑ as 

In order to formulate Problem (12) as a GP [29], we introduce the negative and positive deviational variables. 

 

where Gr is the aspiration level of the objective function r. Now, Problem (12) is reformulated as a mixed 

integer GP problem as 

    

 

 

6|Solution Procedure  

In this section, the solution procedure for addressing the Poss MOMCF problem is outlined through the 

following steps: 

Step 1. Begin by considering the Poss MOMCF problem. 

Step 2. Solve each one of the objective functions and continue this process K times. If all the resulting 

solutions are equal, select one of them and go to Step 5. 

Step 3. Define each objective's MP and establish the aspiration level. 

Step 4. Formulate Problem (13), then solve it using computer packages like GAMS. 

Step5. Conclude the process and determine the stability set of the first kind S(x°, c°) as 

 

μr( Fr(x, c
r)) =   

{
 

 
0,                                           Fr(x, c

r) ≤ Lr,

Ur −  Fr(x, c
r)

Ur − Lr
,  Lr <  Fr(x, c

r) < Ur,

1,                                                Fr(x, c
r) ≥ Ur,

 (9) 

Lr = min
x
 Fr(x, c

r),  Ur = max
x
 Fr(x, c

r),      r = 1, 2, … , K. (10) 

max min
r=1,K

(μr( Fr(x, c
r))), 

Subject to   

x ∈ X, and cr ∈ φα
r , r = 1, K. 

(11) 

maxϑ, 

Subject to   

ϑ ≤ μr( Fr(x, c
r)), r = 1, K, 

x ∈ X, and cr ∈ φα
r , r = 1, K. 

(12) 

Fr(x, c
r) − vr

+ + vr
− = Gr, r = 1, K, (13) 

maxϑ, 

Subject to   

ϑ ≤ μr( Fr(x, c
r)), r = 1, K, 

x ∈ X, and cr ∈ φα
r , r = 1, K, 

Fr(x, c
r) − vr

+ + vr
− = Gr, 

vr
−, vr

+ ≥ 0, r = 1, K  , 0 ≤ ϑ ≤ 1. 

(14) 

ωij (cij
r − (cij

r+)
α
) = 0;  for all  arc (i, j), r = 1, K, 

φij ((cij
r−)

α
− cij

r) = 0;  for all  arc (i, j), r = 1, K. 
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7|Numerical Example 

Consider the following problem: 

 

 

Fig. 2. A network with 5 nodes and 7 arcs [6]. 

The possibilistic variables c̃ij
1 , and c̃ij

2 are represented by the possibility distributions μc̃ij
1 (. ), and μc̃ij

2 (. ) in Figs. 

1 and 2. The supports of the possibilistic variables c̃ij
1 , and c̃ij

2 are [3,12], and [2, 10]. Hence, for the parametric 

functions 0 ≤ τ ≤ 1, the supports are 

min F1(x, c
1) = ∑ c̃ij

1

(i,j)∈M

xij, 

min F2(x, c
2) = ∑ c̃ij

2

(i,j)∈M

xij, 

Subject to                                                                                                                   

x12 + x13 = 10, 

x24 + x25 − x12 = 0, 

x34 + x35 − x13 = 20, 

x45 − x24 − x34 = −15,  

−x25 − x35 − x45 = −15, 

x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50]. 

(15) 

Supp (c̃12
1 ) = 3 + 4τ,          μc̃121 (3) = μc̃121 (7) = 0, 

Supp (c̃13
1 ) = 6 − 2τ,          μc̃131 (4) = μc̃131 (6) = 0, 

Supp (c̃24
1 ) = 5 + 4τ,          μc̃241 (5) = μc̃241 (9) = 0, 

Supp (c̃25
1 ) = 7 + τ,             μc̃131 (7) = μc̃131 (8) = 0, 

Supp (c̃34
1 ) = 9 + 2τ,          μc̃341 (9) = μc̃341 (11) = 0, 

Supp (c̃35
1 ) = 10 + 2τ,          μc̃351 (10) = μc̃351 (12) = 0, 

Supp (c̃45
1 ) = 1 + τ,              μc̃451 (1) = μc̃451 (2) = 0, 

Supp (c̃12
2 ) = 13 − 4τ,          μc̃122 (13) = μc̃122 (9) = 0, 

Supp (c̃13
2 ) = 4 + 4τ,          μc̃132 (4) = μc̃132 (8) = 0, 

Supp (c̃24
2 ) = 7 − 4τ,          μc̃242 (7) = μc̃242 (3) = 0, 

Supp (c̃25
2 ) = 4 + 4τ,          μc̃252 (4) = μc̃252 (8) = 0, 

Supp (c̃34
2 ) = 7 − 2τ,          μc̃342 (5) = μc̃342 (7) = 0, 
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At τ =0, the GP for the problem becomes 

Using the GINO software, the optimal compromise solution is 

To determine the stability set S (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°), 

We get I1 ⊆ {1, 2}.  

For I1 = ∅,ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 , ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 = 0. Then 

Supp (c̃35
2 ) = 4 + 2τ,          μc̃352

(4) = μc̃352
(6) = 0, 

Supp (c̃45
2 ) = 10 − 4τ,          μc̃452 (6) = μc̃452 (10) = 0. 

Min F1(τ) =(3 + 4τ)x12 + (6 − 2τ)x13 + (5 + 4τ)x24 + (7 + τ)x25 + (9 + 2τ)x34 

+(10 + 2τ)x35 + (1 + τ)x45, 

Min F2(τ) =(13 − 4τ)x12 + (4 + 4τ)x13 + (7 − 4τ)x24 + (4 + 4τ)x25 + (7 − 2τ)x34 

+(4 + 2τ)x35 + (10 − 4τ)x45, 
Subject to                                                                                                                   

x12 + x13 = 10, 

x24 + x25 − x12 = 0, 

x34 + x35 − x13 = 20, 

x45 − x24 − x34 = −15, 

−x25 − x35 − x45 = −15, 

x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50], and τ ∈ [0,1]. 

L1 = 265, U1 = 375, L2 = 250, U1 = 425.  

(16) 

maxϑ 

Subject to                                                                                                              

⬚3x12 + 6x13 + 5x24 + 7x25 + 9x34 + 10x35 + x45 + ϑ110 ≤ 375, 

 ⬚13x12 + 4x13 + 7x24 + 4x25 + 7x34 + 4x35 + 10x45 + ϑ175 ≤ 425, 

x12 + x13 = 10, 

x24 + x25 − x12 = 0, 

x34 + x35 − x13 = 20, 

x45 − x24 − x34 = −15, 

−x25 − x35 − x45 = −15, 

x12 ∈ [0, 20], x13 ∈ [0, 10], x24 ∈ [0, 20], x25 ∈ [0,10], 

x34 ∈ [0, 30], x35 ∈ [0,25], x45 ∈ [0, 50], 

⬚3x12 + 6x13 + 5x24 + 7x25 + 9x34 + 10x35 + x45 − v1
+ + v1

− = 265, 

⬚13x12 + 4x13 + 7x24 + 4x25 + 7x34 + 4x35 + 10x45 − v2
+ + v2

− = 250, 

v1
+, v1

−, v2
+, v2

− =  and ϑ ∈ [0,1]. 

(17) 

x12
° = x24

° = 8.56,  x13
° = 1.44, x25

° =  x45
° = 0,  x34

° = 6.44, x35
° = 15, v1

+ = 20.11, 

v1
− = v2

− = 0, v2
+ = 32,  ϑ° = 0.82. 

 

ω12
1 (3 − (c12

1+)0) = 0,ω13
1 (6 − (c13

1+)0) = 0,ω24
1 (5 − (c24

1+)0) = 0,ω25
1 (7 − (c25

1+)
0
) = 0, 

ω34
1 (9 − (c34

1+)0) = 0,ω35
1 (10 − (c35

1+)
0
) = 0,ω45

1 (1 − (c45
1+)

0
) = 0,ω12

2 (13 − (c12
2+)0) = 0,   

ω13
2 (4 − (c13

2+)0) = 0,ω24
2 (7 − (c24

2+)0) = 0,ω25
2 (4 − (c25

2+)
0
) = 0,ω34

2 (7 − (c34
2+)0) =

0,ω35
2 (4 − (c35

2+)
0
) = 0,ω45

2 (10 − (c45
2+)

0
) = 0  

ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 , ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 ≥ 0. 
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For I2 = {1}, ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 > 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 = 0. Then 

For I3 = {2}, ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 = 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 > 0. Then 

For I4 = {1,2},ω12
1 , ω13

1 , ω24
1 , ω25

1 , ω34
1 , ω35

1 , ω45
1 > 0;ω12

2 , ω13
2 , ω24

2 , ω25
2 , ω34

2 , ω35
2 , ω45

2 > 0. Then 

Hence 

        

8|Discussion 

This section compares the proposed approach with some existing literature to illustrate its advantages. Table 

1 investigates this comparison in the case of some parameters. 

Table 1. Comparisons of different researcher's contributions. 

 

 

 

 

 

 

SI1 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 ≥ 3, (c13

1+)0 ≥ 6, (c24
1+)0 ≥ 5,                                                                

(c25
1+)

0
≥ 7, (c34

1+)0 ≥ 9, (c35
1+)

0
≥ 10, (c45

1+)
0
≥ 1, (c12

2+)0 ≥ 13,                     

(c13
2+)0 ≥ 4, (c24

2+)0 ≥ 7, (c25
2+)

0
≥ 4, (c34

2+)0 ≥ 7, (c35
2+)

0
≥ 4, (c45

2+)
0
≥ 10  

    }
 
 

 
 

. 
 

SI2 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 = 3, (c13

1+)0 = 6, (c24
1+)0 = 5,                                                                   

(c25
1+)

0
= 7, (c34

1+)0 = 9, (c35
1+)

0
= 10, (c45

1+)
0
= 1, (c12

2+)0 ≥ 13,                      

(c13
2+)0 ≥ 4, (c24

2+)0 ≥ 7, (c25
2+)

0
≥ 4, (c34

2+)0 ≥ 7, (c35
2+)

0
≥ 4, (c45

2+)
0
≥ 10  

    }
 
 

 
 

. 
 

SI3 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)

=

{
 
 

 
 cij

r : (c12
1+)0 ≥ 3, (c13

1+)0 ≥ 6, (c24
1+)0 ≥ 5,                                                                 

(c25
1+)

0
≥ 7, (c34

1+)0 ≥ 9, (c35
1+)

0
≥ 10, (c45

1+)
0
≥ 1, (c12

2+)0 = 13,                     

(c13
2+)0 = 4, (c24

2+)0 = 7, (c25
2+)

0
= 4, (c34

2+)0 = 7, (c35
2+)

0
= 4, (c45

2+)
0
= 10  

    }
 
 

 
 

. 
 

SI4 (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°) =

{
 
 

 
 cij

r : (c12
1+)0 = 3, (c13

1+)0 = 6, (c24
1+)0 = 5,                                                                                        

(c25
1+)

0
= 7, (c34

1+)0 = 9, (c35
1+)

0
= 10, (c45

1+)
0
= 1, (c12

2+)0 = 13,                                            

(c13
2+)0 = 4, (c24

2+)0 = 7, (c25
2+)

0
= 4, (c34

2+)0 = 7, (c35
2+)

0
= 4, (c45

2+)
0
= 10                         

    }
 
 

 
 

. 
 

S (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°) =

⋃ SIp (x12
° , x24

° , x13
° , x25

° ,  x45
°  , x34

° , x35
° , cij

1°, cij
2°)4

P=1 . 
 

Author's Name 𝛂 −Efficient  
Solution 

𝛂 −Parametric 
Compromise  Solution 

Fuzzy 
GP 

Stability Set of 
the First Kind 

Environment 

Ghatee and 
Hashemi [30] 

× × × × Fuzzy  

Bustos et al. [31] × × × × Stochastic  
Alharbi et al. [32] √ √ √ √ Fuzzy  
Proposed approach √ √ √ √ Possibilistic  
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 9|Conclusion  

In this study, we introduced a multi-objective MCF problem featuring possibilistic variables. To address this 

problem, a fuzzy GP approach was employed, offering the advantage of accommodating conflicting goals 

and facilitating consideration of the decision environment. The GAMS software was utilized to obtain the 

solution, providing a robust computational framework. The parametric study associated with the α-possibly 

optimal solution was defined and determined without requiring differentiability. Looking ahead, future 

endeavors may involve expanding this investigation to include other fuzzy-like structures, such as interval-

valued fuzzy sets, Neutrosophic sets, Pythagorean fuzzy sets, Spherical fuzzy sets, etc. This extension could 

benefit from additional in-depth discussions and insightful comments, contributing to a more comprehensive 

understanding of the problem landscape. 
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